Collaborative Research: A Unified Framework for the Investigation of Time Series Using Topological Data Analysis

协作研究:使用拓扑数据分析研究时间序列的统一框架

基本信息

  • 批准号:
    1562012
  • 负责人:
  • 金额:
    $ 17.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Recent advances in sensor technology and computer hardware have led to a shift towards data-driven analysis and modeling of engineered and natural systems. The study of the resulting streams of data currently requires extensive expertise and often utilizes methods that are not guaranteed to be optimal. This leads to an overly qualitative analysis that can miss a significant portion of the information hidden within the signal. This project aims to utilize and advance tools from topological data analysis, an emergent field focused on providing quantitative measurements of the shape of data, and to elucidate invisible features and structure of signals which current methods cannot detect. Therefore, the resulting framework will be able to provide insight into the systems that generated the data while providing a strong mathematical footing for automating the analysis of systems and processes. The knowledge gained from the work will benefit a wide variety of scientific fields where analysis from sensor feedback signals is needed such as additive manufacturing and smart drug delivery systems. Furthermore, the interdisciplinary nature of this project will offer students rich opportunities for collaboration and cross-training in a variety of areas in engineering, applied math, and signal analysis. The PIs will also continue and expand their efforts to identify and recruit graduate students from under-represented groups with relevant interests by working with the Association for Women in Mathematics and the Society for Women Engineers.This project is a collaborative effort that seeks to investigate an innovative framework for time series analysis through advancing and linking signal processing, dynamical systems, and topological data analysis. The research team will pursue a topological approach that utilizes the recently developed persistent homology to study the time series of dynamical systems. Specifically, they will (1) derive a solid mathematical foundation based on applied topology which enables a more robust and quantitative investigation of dynamical systems, (2) research innovative methods for studying the topology of the underlying manifold in dynamical systems from collected time series using topological data analysis, and (3) demonstrate and assess the validity of the theoretical results using numerical and physical experiments. The theoretical underpinning of the research is especially suitable for detecting and describing dynamical signatures such as underlying attractors, chaos, and self-similarity using lower dimensional descriptors, rather than lower dimensional representation. Therefore, this work is capable of providing a new perspective into our understanding of time series analysis particularly for dynamical systems with complex behavior.
传感器技术和计算机硬件的最新进展导致了对工程和自然系统的数据驱动分析和建模的转变。目前,对由此产生的数据流的研究需要广泛的专业知识,而且经常使用不能保证是最佳的方法。这导致过度定性的分析,可能会错过隐藏在信号中的大部分信息。该项目旨在利用和推进拓扑数据分析工具,这是一个新兴领域,专注于提供数据形状的定量测量,并阐明当前方法无法检测的信号的不可见特征和结构。 因此,由此产生的框架将能够提供对生成数据的系统的洞察,同时为系统和流程的自动化分析提供强大的数学基础。从这项工作中获得的知识将有利于各种需要分析传感器反馈信号的科学领域,如增材制造和智能药物输送系统。此外,该项目的跨学科性质将为学生提供在工程,应用数学和信号分析等各个领域进行合作和交叉培训的丰富机会。研究所还将继续并扩大努力,通过与数学界女性协会和女性工程师协会合作,从代表性不足的群体中发现并招募具有相关兴趣的研究生。该项目是一项合作努力,旨在通过推进和连接信号处理,动力系统和拓扑数据分析来研究时间序列分析的创新框架。研究小组将采用拓扑方法,利用最近开发的持久同源性来研究动力系统的时间序列。具体而言,他们将(1)基于应用拓扑学推导出坚实的数学基础,从而能够对动力系统进行更强大和定量的研究,(2)研究创新方法,用于使用拓扑数据分析从收集的时间序列中研究动力系统中底层流形的拓扑结构,以及(3)使用数值和物理实验演示和评估理论结果的有效性。该研究的理论基础特别适合于使用低维描述符而不是低维表示来检测和描述动力学签名,例如潜在的吸引子,混沌和自相似性。因此,这项工作是能够提供一个新的视角到我们的时间序列分析的理解,特别是对具有复杂行为的动力系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth Munch其他文献

Correction to: A topological framework for identifying phenomenological bifurcations in stochastic dynamical systems
  • DOI:
    10.1007/s11071-024-09479-x
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Sunia Tanweer;Firas A. Khasawneh;Elizabeth Munch;Joshua R. Tempelman
  • 通讯作者:
    Joshua R. Tempelman
An Invitation to the Euler Characteristic Transform
欧拉特征变换的邀请
  • DOI:
    10.48550/arxiv.2310.10395
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elizabeth Munch
  • 通讯作者:
    Elizabeth Munch

Elizabeth Munch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elizabeth Munch', 18)}}的其他基金

CAREER: Reeb graph learning: Classification, Clustering, and Embedding of Graphical Signatures
职业:Reeb 图学习:图形签名的分类、聚类和嵌入
  • 批准号:
    2142713
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: A Unified Framework for Geometric and Topological Signature-Based Shape Comparison
合作研究:AF:Medium:基于几何和拓扑签名的形状比较的统一框架
  • 批准号:
    2106578
  • 财政年份:
    2021
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Continuing Grant
AF: Small: Collaborative Research: Reeb graph flows: Metrics, Drawings, and Analysis
AF:小型:协作研究:Reeb 图流:指标、绘图和分析
  • 批准号:
    1907591
  • 财政年份:
    2019
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
CDS&E: Collaborative Research: Machine Learning on Dynamical Systems via Topological Features
CDS
  • 批准号:
    1800446
  • 财政年份:
    2017
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
Collaborative Research: A Unified Framework for the Investigation of Time Series Using Topological Data Analysis
协作研究:使用拓扑数据分析研究时间序列的统一框架
  • 批准号:
    1800466
  • 财政年份:
    2017
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
CDS&E: Collaborative Research: Machine Learning on Dynamical Systems via Topological Features
CDS
  • 批准号:
    1622320
  • 财政年份:
    2016
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311757
  • 财政年份:
    2023
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311756
  • 财政年份:
    2023
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Towards Energy-Efficient Millimeter Wave Wireless Networks: A Unified Systems and Circuits Framework
合作研究:CCSS:迈向节能毫米波无线网络:统一系统和电路框架
  • 批准号:
    2242700
  • 财政年份:
    2023
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311758
  • 财政年份:
    2023
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR: Medium: Towards A Unified Memory-centric Computing System with Cross-layer Support
协作研究:CSR:中:迈向具有跨层支持的统一的以内存为中心的计算系统
  • 批准号:
    2310422
  • 财政年份:
    2023
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Towards A Unified Memory-centric Computing System with Cross-layer Support
协作研究:CSR:中:迈向具有跨层支持的统一的以内存为中心的计算系统
  • 批准号:
    2310423
  • 财政年份:
    2023
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCSS: Towards Energy-Efficient Millimeter Wave Wireless Networks: A Unified Systems and Circuits Framework
合作研究:CCSS:迈向节能毫米波无线网络:统一系统和电路框架
  • 批准号:
    2242701
  • 财政年份:
    2023
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
  • 批准号:
    2139735
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
U.S.-Ireland R&D Partnership: Collaborative Research: CNS Core: Medium: A unified framework for the emulation of classical and quantum physical layer networks
美国-爱尔兰 R
  • 批准号:
    2247007
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
  • 批准号:
    2140057
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了