CDS&E: Collaborative Research: Machine Learning on Dynamical Systems via Topological Features

CDS

基本信息

  • 批准号:
    1622320
  • 负责人:
  • 金额:
    $ 10.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Objects whose state changes over time, known as dynamical systems, describe a large number of natural and engineered processes; therefore, developing a deeper understanding of their behavior is of great importance. While sometimes it is possible to derive mathematical models that describe the evolution of a dynamical system, these models are almost always an abstraction of the physical system and, therefore, have a limited ability to predict how the system will change in time. Further, when the system under investigation is large or too complicated with several factors influencing its behavior, it may simply be impossible to describe the system with the corresponding descriptive equations. Consequently, in the absence of adequate analytical models it becomes necessary to instrument the dynamical system with sensors and use the resulting data to understand its characteristics. Specifically, the change in the state of a dynamic system is often governed by an underlying skeleton that gives the overall behavior a shape, and thus the shape of the skeleton directly governs the system behavior. Most of the time, this shape of the underlying skeleton is unknown and can be easily masked by the complicated and rich system signals. The emergent field of topological data analysis (TDA), a branch of mathematics that quantifies the shape of data, is capable of revealing information that is invisible to other existing methods by providing a high level X-ray of the skeleton governing the dynamics. However, the information-rich structures provided by TDA still need to be interpreted in order to classify the dynamics and predict future outcomes. To accomplish this, the principal investigators will leverage ideas from machine learning, a field of study that investigates algorithms that can learn from the data and use the acquired knowledge for classification and prediction. However, the mathematical theory that elucidates how machine learning can operate on the features extracted using TDA currently does not exist. Hence, this work will develop the necessary, novel mathematical and computational tools at the intersection of topological data analysis (TDA), dynamical systems, and machine learning.The principal investigators seek to understand and formulate the foundations of machine learning when the important features of a dynamical system are summarized by descriptors generated with topological data analysis (TDA). Although these signatures provide an information-rich structure for the evolution of the dynamics, current literature has only been utilizing a fraction of the available information in order to identify, predict, and classify different dynamic behavior. One of the current impediments to further exploring the relationship between TDA and dynamical systems is the lack of machine learning theory that can operate on these structures. Therefore, the success of our effort will lead to (1) the establishment of a novel, general, and robust machine learning framework for studying dynamic signals via topological signatures, (2) better understanding of the relationship between TDA and dynamical systems via the use of these methods on real and synthetic data, and (3) the integration of the new knowledge into the investigators' educational programs, which will provide timely training of well-equipped next generation scientists and engineers.
状态随时间变化的对象,称为动态系统,描述了大量的自然和工程过程;因此,深入了解它们的行为是非常重要的。虽然有时可以推导出描述动力系统演化的数学模型,但这些模型几乎总是物理系统的抽象,因此预测系统如何随时间变化的能力有限。此外,当所研究的系统很大或太复杂,有几个因素影响其行为时,可能根本不可能用相应的描述性方程来描述系统。因此,在缺乏足够的分析模型的情况下,有必要用传感器对动力系统进行仪器测量,并利用所得数据来了解其特性。具体地说,动态系统状态的变化通常是由一个底层的框架控制的,这个框架给了整体行为一个形状,因此框架的形状直接控制着系统行为。大多数时候,底层骨架的这种形状是未知的,很容易被复杂而丰富的系统信号所掩盖。拓扑数据分析(TDA)是一个新兴领域,它是量化数据形状的数学分支,能够通过提供控制动态的骨架的高水平x射线来揭示其他现有方法看不到的信息。然而,TDA提供的信息丰富的结构仍然需要解释,以便对动态进行分类和预测未来的结果。为了实现这一目标,主要研究人员将利用机器学习的想法,这是一个研究算法的研究领域,可以从数据中学习,并使用获得的知识进行分类和预测。然而,解释机器学习如何对使用TDA提取的特征进行操作的数学理论目前还不存在。因此,这项工作将在拓扑数据分析(TDA)、动力系统和机器学习的交叉点开发必要的、新颖的数学和计算工具。当动态系统的重要特征由拓扑数据分析(TDA)生成的描述符总结时,主要研究人员试图理解和制定机器学习的基础。尽管这些特征为动力学的演化提供了一个信息丰富的结构,但目前的文献只利用了可用信息的一小部分来识别、预测和分类不同的动态行为。目前进一步探索TDA和动力系统之间关系的障碍之一是缺乏可以在这些结构上操作的机器学习理论。因此,我们的努力的成功将导致(1)建立一个新的、通用的、健壮的机器学习框架,通过拓扑特征来研究动态信号;(2)通过在真实和合成数据上使用这些方法来更好地理解TDA和动态系统之间的关系;(3)将新知识整合到研究人员的教育计划中。这将为装备精良的下一代科学家和工程师提供及时的培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth Munch其他文献

Correction to: A topological framework for identifying phenomenological bifurcations in stochastic dynamical systems
  • DOI:
    10.1007/s11071-024-09479-x
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Sunia Tanweer;Firas A. Khasawneh;Elizabeth Munch;Joshua R. Tempelman
  • 通讯作者:
    Joshua R. Tempelman
An Invitation to the Euler Characteristic Transform
欧拉特征变换的邀请
  • DOI:
    10.48550/arxiv.2310.10395
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elizabeth Munch
  • 通讯作者:
    Elizabeth Munch

Elizabeth Munch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elizabeth Munch', 18)}}的其他基金

CAREER: Reeb graph learning: Classification, Clustering, and Embedding of Graphical Signatures
职业:Reeb 图学习:图形签名的分类、聚类和嵌入
  • 批准号:
    2142713
  • 财政年份:
    2022
  • 资助金额:
    $ 10.17万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: A Unified Framework for Geometric and Topological Signature-Based Shape Comparison
合作研究:AF:Medium:基于几何和拓扑签名的形状比较的统一框架
  • 批准号:
    2106578
  • 财政年份:
    2021
  • 资助金额:
    $ 10.17万
  • 项目类别:
    Continuing Grant
AF: Small: Collaborative Research: Reeb graph flows: Metrics, Drawings, and Analysis
AF:小型:协作研究:Reeb 图流:指标、绘图和分析
  • 批准号:
    1907591
  • 财政年份:
    2019
  • 资助金额:
    $ 10.17万
  • 项目类别:
    Standard Grant
CDS&E: Collaborative Research: Machine Learning on Dynamical Systems via Topological Features
CDS
  • 批准号:
    1800446
  • 财政年份:
    2017
  • 资助金额:
    $ 10.17万
  • 项目类别:
    Standard Grant
Collaborative Research: A Unified Framework for the Investigation of Time Series Using Topological Data Analysis
协作研究:使用拓扑数据分析研究时间序列的统一框架
  • 批准号:
    1800466
  • 财政年份:
    2017
  • 资助金额:
    $ 10.17万
  • 项目类别:
    Standard Grant
Collaborative Research: A Unified Framework for the Investigation of Time Series Using Topological Data Analysis
协作研究:使用拓扑数据分析研究时间序列的统一框架
  • 批准号:
    1562012
  • 财政年份:
    2016
  • 资助金额:
    $ 10.17万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 10.17万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 10.17万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 10.17万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347422
  • 财政年份:
    2024
  • 资助金额:
    $ 10.17万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 10.17万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 10.17万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
  • 批准号:
    2245380
  • 财政年份:
    2023
  • 资助金额:
    $ 10.17万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Systematic Predictions for Dynamical Signatures of New Dark Matter Physics in Galaxies
合作研究:CDS
  • 批准号:
    2307787
  • 财政年份:
    2023
  • 资助金额:
    $ 10.17万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
  • 批准号:
    2302618
  • 财政年份:
    2023
  • 资助金额:
    $ 10.17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了