III: Medium: Collaborative Research: Deep Learning in Spectroscopic Domains
III:媒介:协作研究:光谱领域的深度学习
基本信息
- 批准号:1564083
- 负责人:
- 金额:$ 39.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many problems in science today require the analysis of massive datasets. This project investigates the fundamental problem of extracting latent hidden regularities from high-dimensional scientific data sets, specifically from two different types of spectroscopic measurements -- three-dimensional hyperspectral imaging used in remote sensing of the Earth and other planets, and one-dimensional spectral signals arising from chemical analyses from laser-induced breakdown spectroscopy (LIBS), such as used currently by the Curiosity rover on Mars. The project is applying recent advances in deep learning, optimization, and machine learning to practical real-world scientific applications involving the analysis of materials from Earth and outer space, such as Mars, as well as the mapping of Martian and terrestrial surfaces through hyperspectral imagery. Deep learning uses multi-layer neural networks to construct a hierarchy of latent representations of high-dimensional datasets. This project designs novel architectures and algorithms for deep learning, and applies them to spectroscopic domains, such as LIBS and hyperspectral imaging. Three challenges from spectroscopic domains guide the research. First, in many applications such as the Curiosity rover on Mars, the number of available LIBS spectra are limited as it requires an active sensing operation followed by transmission of data by a robot situated millions of miles from Earth. A further challenge is that data from Mars is inherently unlabeled, and instrumental variations and terrain variations between Earth and Mars require solving a key transfer learning problem. For hyperspectral imaging, the project is extending work on deep learning applied to two-dimensional images to data that involves two spatial dimensions as well as the third spectral dimension, where images are recorded at multiple wavelengths. This project explores a variety of ways of designing new convolutional neural networks and other approaches that can effectively exploit the third spectral dimension.
当今科学中的许多问题都需要对大量数据集进行分析。该项目研究从高维科学数据集,特别是从两种不同类型的光谱测量-地球和其他行星遥感中使用的三维超光谱成像和激光诱导击穿光谱化学分析产生的一维光谱信号-中提取潜在隐藏光谱的基本问题,例如目前在火星上使用的Currency漫游者。该项目正在将深度学习、优化和机器学习的最新进展应用于实际的现实世界科学应用,包括分析来自地球和外太空(如火星)的材料,以及通过高光谱图像绘制火星和陆地表面。深度学习使用多层神经网络来构建高维数据集的潜在表示的层次结构。该项目为深度学习设计了新的架构和算法,并将其应用于光谱领域,如LIBS和高光谱成像。来自光谱领域的三个挑战指导了这项研究。首先,在许多应用中,例如火星上的Currency漫游者,可用的LIBS光谱的数量是有限的,因为它需要主动感测操作,然后由距离地球数百万英里的机器人传输数据。另一个挑战是,来自火星的数据本质上是未标记的,地球和火星之间的仪器变化和地形变化需要解决一个关键的迁移学习问题。对于高光谱成像,该项目正在将应用于二维图像的深度学习工作扩展到涉及两个空间维度以及第三光谱维度的数据,其中图像以多个波长记录。该项目探索了设计新卷积神经网络的各种方法,以及其他可以有效利用第三光谱维度的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melinda Dyar其他文献
Melinda Dyar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melinda Dyar', 18)}}的其他基金
Collaborative Research: Building and Applying a Universal Plagioclase Oxybarometer using X-ray Absorption Spectroscopy
合作研究:使用 X 射线吸收光谱法构建和应用通用斜长石氧压计
- 批准号:
2243745 - 财政年份:2023
- 资助金额:
$ 39.42万 - 项目类别:
Continuing Grant
Collaborative Research: Redox Ratios in Amphiboles as Proxies for Volatile Budgets in Igneous Systems
合作研究:角闪石的氧化还原比作为火成岩系统中不稳定预算的代表
- 批准号:
2042452 - 财政年份:2021
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant
Collaborative Research: Formation, Stability, and Detection of Amorphous Ferric Sulfate Salts on Mars
合作研究:火星上无定形硫酸铁盐的形成、稳定性和检测
- 批准号:
1819162 - 财政年份:2018
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant
Collaborative Research: Refining Geothermobarometry in Pyroxenes using In Situ Measurements of Fe3+
合作研究:利用 Fe3 的原位测量改进辉石中的地温气压测量
- 批准号:
1754261 - 财政年份:2018
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant
Collaborative Research:Transfer Learning for Chemical Analyses from Laser-Induced Breakdown Spectroscopy
合作研究:激光诱导击穿光谱化学分析的迁移学习
- 批准号:
1306133 - 财政年份:2013
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant
Building Analytical Competence for Geoscience Students through use of Spectroscopic Tools
通过使用光谱工具培养地球科学学生的分析能力
- 批准号:
1140312 - 财政年份:2012
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant
Collaborative Research: Effects of Composition and Cooling Rate on Fe XANES Glass Calibrations
合作研究:成分和冷却速率对 Fe XANES 玻璃校准的影响
- 批准号:
1219761 - 财政年份:2012
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant
Scaffolding Effective Practice for Use of Animations in Teaching Mineralogy and Physical Geology
动画在矿物学和自然地质学教学中运用的有效实践
- 批准号:
0837212 - 财政年份:2009
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant
RUI: Collaborative Research: Redox Ratios by Fe-XANES
RUI:合作研究:Fe-XANES 的氧化还原比
- 批准号:
0809459 - 财政年份:2008
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant
RUI: Collaborative Research: Improvements in the Application of the Mossbauer Effect to Studies of Minerals
RUI:合作研究:穆斯堡尔效应在矿物研究中应用的改进
- 批准号:
0439161 - 财政年份:2005
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 39.42万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310113 - 财政年份:2023
- 资助金额:
$ 39.42万 - 项目类别:
Standard Grant