Collaborative Research:Transfer Learning for Chemical Analyses from Laser-Induced Breakdown Spectroscopy

合作研究:激光诱导击穿光谱化学分析的迁移学习

基本信息

  • 批准号:
    1306133
  • 负责人:
  • 金额:
    $ 14.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

With support from the Chemical Measurements and Imaging program, Professors Melinda Dyar of Mt. Holyoke College and Sridhar Mahadevan of University of Massachusetts at Amherst and their students will use laser-induced breakdown spectroscopy (LIBS) measurements, including laboratory investigations of standard materials at varying experimental conditions, to develop numerical methods that will address limitations to the broad application of LIBS imposed by matrix effects and plasma variability. State-of-the-art dimensionality reduction and transfer learning methods from machine learning and statistics will be used to build innovative LIBS-based predictive models. These investigations will extend classical methods in statistics for dealing with multiple paired data sets, such as canonical correlational analysis, to deal with unlabeled data, and extract nonlinear low-dimensional regularities in the data. The project includes the design of a suite of model-building tools that can deal with a range of problems and optimization objectives, including different types of correspondence information available across datasets, diversity of global objectives ranging from preserving local to global geometry, and producing linear or nonlinear mappings to lower-dimensional factors. Laser-induced breakdown spectroscopy (LIBS) is a chemical analysis tool that uses the light emitted by a sample when a focused laser pulse generates a plasma at the sample surface. LIBS has a number of features that make it particularly useful for field use, including rapid analysis, minimal sample preparation and suitability for stand-off, that is remote, detection. Moreover, LIBS can detect and quantify light elements that are not always measured using other methods. Consequently, LIBS is well-suited to many applications including, defense interests (e.g., military explosive detection, illegal drug detection, airport security), in-situ analysis of archeological sites, field work at hazardous waste sites, and geological resource exploration. However, utilization of LIBS measurements is limited by signal variability with measurement and sample conditions. This project launches an integrated research program to couple state of the art LIBS instrumentation at Mount Holyoke College to equally state of the art numerical methodology in artificial intelligence and machine learning at the nearby University of Massachusetts to increase the utility of LIBS measurements. This project will provide an interdisciplinary training environment that includes undergraduate, graduate and post-doctoral researchers.
在化学测量和成像项目的支持下,来自Mt.霍利奥克学院和马萨诸塞州大学阿默斯特分校的Sridhar Mahadevan及其学生将使用激光诱导击穿光谱(LIBS)测量,包括在不同实验条件下对标准材料的实验室研究,以开发数值方法,解决基质效应和等离子体可变性对LIBS广泛应用的限制。来自机器学习和统计学的最先进的降维和迁移学习方法将用于构建创新的基于LIBS的预测模型。这些研究将扩展经典的统计方法,用于处理多个成对的数据集,如典型相关分析,处理未标记的数据,并提取非线性低维的数据。该项目包括设计一套模型构建工具,可以处理一系列问题和优化目标,包括跨数据集提供的不同类型的对应信息,从保持局部到全局几何形状的全局目标的多样性,以及产生线性或非线性映射到低维因素。激光诱导击穿光谱(LIBS)是一种化学分析工具,当聚焦激光脉冲在样品表面产生等离子体时,该工具使用样品发射的光。 LIBS具有许多使其特别适用于现场使用的功能,包括快速分析,最小的样品制备和适合于远距离检测。此外,LIBS可以检测和量化不总是使用其他方法测量的轻元素。 因此,LIBS非常适合于许多应用,包括国防利益(例如,军事爆炸物探测、非法毒品探测、机场安全)、考古遗址现场分析、危险废物现场实地工作和地质资源勘探。 然而,LIBS测量的利用受到测量和样品条件下的信号可变性的限制。 该项目启动了一项综合研究计划,将霍利奥克山学院最先进的LIBS仪器与附近马萨诸塞州大学人工智能和机器学习中最先进的数值方法相结合,以提高LIBS测量的实用性。 该项目将提供一个跨学科的培训环境,包括本科生,研究生和博士后研究人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Melinda Dyar其他文献

Melinda Dyar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Melinda Dyar', 18)}}的其他基金

Collaborative Research: Building and Applying a Universal Plagioclase Oxybarometer using X-ray Absorption Spectroscopy
合作研究:使用 X 射线吸收光谱法构建和应用通用斜长石氧压计
  • 批准号:
    2243745
  • 财政年份:
    2023
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Continuing Grant
Collaborative Research: Redox Ratios in Amphiboles as Proxies for Volatile Budgets in Igneous Systems
合作研究:角闪石的氧化还原比作为火成岩系统中不稳定预算的代表
  • 批准号:
    2042452
  • 财政年份:
    2021
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Formation, Stability, and Detection of Amorphous Ferric Sulfate Salts on Mars
合作研究:火星上无定形硫酸铁盐的形成、稳定性和检测
  • 批准号:
    1819162
  • 财政年份:
    2018
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Refining Geothermobarometry in Pyroxenes using In Situ Measurements of Fe3+
合作研究:利用 Fe3 的原位测量改进辉石中的地温气压测量
  • 批准号:
    1754261
  • 财政年份:
    2018
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Deep Learning in Spectroscopic Domains
III:媒介:协作研究:光谱领域的深度学习
  • 批准号:
    1564083
  • 财政年份:
    2016
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Continuing Grant
Building Analytical Competence for Geoscience Students through use of Spectroscopic Tools
通过使用光谱工具培养地球科学学生的分析能力
  • 批准号:
    1140312
  • 财政年份:
    2012
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Effects of Composition and Cooling Rate on Fe XANES Glass Calibrations
合作研究:成分和冷却速率对 Fe XANES 玻璃校准的影响
  • 批准号:
    1219761
  • 财政年份:
    2012
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Scaffolding Effective Practice for Use of Animations in Teaching Mineralogy and Physical Geology
动画在矿物学和自然地质学教学中运用的有效实践
  • 批准号:
    0837212
  • 财政年份:
    2009
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
RUI: Collaborative Research: Redox Ratios by Fe-XANES
RUI:合作研究:Fe-XANES 的氧化还原比
  • 批准号:
    0809459
  • 财政年份:
    2008
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
RUI: Collaborative Research: Improvements in the Application of the Mossbauer Effect to Studies of Minerals
RUI:合作研究:穆斯堡尔效应在矿物研究中应用的改进
  • 批准号:
    0439161
  • 财政年份:
    2005
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2414527
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327571
  • 财政年份:
    2023
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
  • 批准号:
    2232875
  • 财政年份:
    2023
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219796
  • 财政年份:
    2023
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219795
  • 财政年份:
    2023
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
  • 批准号:
    2230593
  • 财政年份:
    2023
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Photophysics and Electron Transfer Reactivity of Ion Radical Excited States
CAS:合作研究:离子自由基激发态的光物理学和电子转移反应性
  • 批准号:
    2246509
  • 财政年份:
    2023
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327572
  • 财政年份:
    2023
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324489
  • 财政年份:
    2023
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了