Collaborative Research: Redox Ratios in Amphiboles as Proxies for Volatile Budgets in Igneous Systems

合作研究:角闪石的氧化还原比作为火成岩系统中不稳定预算的代表

基本信息

  • 批准号:
    2042452
  • 负责人:
  • 金额:
    $ 27.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Iron is the only element with multiple valence states (iron metal or Fe0, ferrous iron or Fe2+, and ferric iron or Fe3+) that is a major constituent in rock-forming minerals. It has long been a goal of analytical geochemists to develop methods to analyze the amounts of each of these individually, because their relative abundances record how oxygen evolved in the systems from which the minerals formed. Hydrogen is also an important element in understanding magma evolution. This project will develop methodology to make such measurements on one important mineral group: amphiboles using two types of spectroscopy. X-ray absorption spectroscopy will measure iron valence state, and Raman spectroscopy will measure both iron valence state and the amount of hydrogen present. This work is important because it will enable geochemists to trace how hydrogen and the different valence states of iron behave in magmas as amphiboles crystallize. It will also support undergraduate and graduate student researchers by providing hands-on laboratory training, contributing to workforce development and graduate school preparation.This project will undertake four interrelated tasks aimed at creating and applying a calibration for hydrogen, ferric, and ferrous iron in amphibole minerals using Raman and x-ray absorption spectroscopies.1. The team will create an amphibole calibration for microanalysis of ferric iron using x-ray absorption spectroscopy (XAS). Development of techniques for microanalysis of Fe3+/Fe2+ remains a high priority for in situ analyses of geological samples in standard thin sections. The need is particularly acute for amphiboles, as it is a dominant silicate host for ferric iron in igneous and metamorphic rocks. Calibration of this technique requires access to dozens of amphibole samples with known Fe3+ and H contents and time-consuming analyses of oriented single crystals. 2. The team will create a Raman spectral library of the same well-characterized samples for use in interpreting and potentially deriving Fe3+ and H contents. Recent work by a group at the University of Hamburg suggests that both Fe3+ and H may be determined from Raman spectra of amphiboles. Testing this work and establishing robust Raman calibrations will enable the use of Raman scattering as a way to probe both the ferric iron and hydrogen content of amphiboles, and could be applied to an extremely diverse set of amphibole data collected both in the lab and in the field. It will also fill in the sparse amphibole single-crystal data in the existing RRUFF database with powder data increasing the viability of the database. 3. The team will characterize the partitioning of Fe3+ and H between amphibole and melt in controlled experimental conditions. Measuring the ferric iron and H contents in amphiboles will provide immense geologic value only if they can account for the intensive and extensive variables that control the geochemical partitioning between melt and crystal, and the dehydrogenation of amphibole. Amphibole synthesis experiments at controlled P, T, XH2O and fO2 will be conducted. The synthetic amphiboles, glasses, and associated minerals will be analyzed for hydrogen and iron partitioning behavior. By conducting experiments with a range of starting compositions and oxygen fugacities, they will build a database that can be applied to natural amphiboles. 4. The team will explore the effect of Fe3+ on partitioning and geobarometers involving amphibole using the Shiveluch volcano super-hydrous magmas as a case study. Using the calibrations from the above three tasks, they will be able to better constrain the P-T- fO2 evolution of amphiboles from Shiveluch volcano, the most explosive volcano in the world during the Holocene.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
铁是唯一具有多价态的元素(铁金属或Fe 0,亚铁或Fe 2+,三价铁或Fe 3+),是岩石形成矿物的主要成分。长期以来,分析地球化学家的一个目标是开发出单独分析每种矿物含量的方法,因为它们的相对丰度记录了氧在形成矿物的系统中的演变。氢也是了解岩浆演化的重要元素。该项目将制定方法,利用两种光谱学对一个重要的矿物类别:角闪石进行这种测量。X射线吸收光谱法将测量铁的价态,而拉曼光谱法将测量铁的价态和存在的氢的量。这项工作很重要,因为它将使地球化学家能够追踪氢和铁的不同价态在角闪石结晶时在岩浆中的行为。它还将通过提供实验室实践培训来支持本科生和研究生研究人员,为劳动力发展和研究生院准备做出贡献。该项目将开展四项相互关联的任务,旨在使用拉曼和X射线吸收光谱仪创建和应用角闪石矿物中氢、三价铁和亚铁的校准。1.该团队将使用X射线吸收光谱法(XAS)创建用于三价铁微量分析的闪石校准。发展Fe 3 +/Fe 2+的微量分析技术仍然是标准薄切片地质样品原位分析的高度优先事项。角闪石的需求特别迫切,因为它是火成岩和变质岩中三价铁的主要硅酸盐宿主。这种技术的校准需要获得数十个已知Fe 3+和H含量的角闪石样品,并对定向单晶进行耗时的分析。2.该团队将创建一个拉曼光谱库,用于解释和潜在的推导Fe 3+和H含量相同的良好表征的样品。汉堡大学的一个小组最近的工作表明,Fe 3+和H都可以从角闪石的拉曼光谱中确定。测试这项工作和建立强大的拉曼校准将使使用拉曼散射作为一种方式来探测角闪石的三价铁和氢含量,并可以应用于一个非常多样化的一组角闪石数据收集在实验室和现场。它还将用粉末数据填补现有RRUFF数据库中稀疏的角闪石单晶数据,提高数据库的可行性。3.该小组将在受控的实验条件下表征角闪石和熔体之间的Fe 3+和H的分配。角闪石中三价铁和氢含量的测定,只有在能解释控制熔体和晶体之间的地球化学分配以及角闪石脱氢作用的大量和大量变量的情况下,才能提供巨大的地质价值。将在控制P、T、XH 2 O和fO 2的条件下进行角闪石合成实验。将分析合成角闪石、玻璃和伴生矿物的氢和铁分配行为。通过对一系列起始成分和氧逸度进行实验,他们将建立一个可应用于天然闪石的数据库。4.该小组将探索Fe 3+对涉及角闪石的分区和地质压力计的影响,使用Shiveluch火山超含水岩浆作为案例研究。利用上述三项任务的校准,他们将能够更好地限制Shiveluch火山角闪石的P-T-fO 2演化,Shiveluch火山是全新世期间世界上最具爆炸性的火山。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental calibration of an Fe3+/Fe2+-in-amphibole oxybarometer and its application to shallow magmatic processes at Shiveluch Volcano, Kamchatka
角闪石中 Fe3/Fe2 氧压计的实验校准及其在堪察加 Shiveluch 火山浅层岩浆过程中的应用
  • DOI:
    10.2138/am-2022-8031
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Goltz, Andrea E.;Krawczynski, Michael J.;McCanta, Molly C.;Dyar, M. Darby
  • 通讯作者:
    Dyar, M. Darby
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Melinda Dyar其他文献

Melinda Dyar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Melinda Dyar', 18)}}的其他基金

Collaborative Research: Building and Applying a Universal Plagioclase Oxybarometer using X-ray Absorption Spectroscopy
合作研究:使用 X 射线吸收光谱法构建和应用通用斜长石氧压计
  • 批准号:
    2243745
  • 财政年份:
    2023
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: Formation, Stability, and Detection of Amorphous Ferric Sulfate Salts on Mars
合作研究:火星上无定形硫酸铁盐的形成、稳定性和检测
  • 批准号:
    1819162
  • 财政年份:
    2018
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Refining Geothermobarometry in Pyroxenes using In Situ Measurements of Fe3+
合作研究:利用 Fe3 的原位测量改进辉石中的地温气压测量
  • 批准号:
    1754261
  • 财政年份:
    2018
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Deep Learning in Spectroscopic Domains
III:媒介:协作研究:光谱领域的深度学习
  • 批准号:
    1564083
  • 财政年份:
    2016
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Continuing Grant
Collaborative Research:Transfer Learning for Chemical Analyses from Laser-Induced Breakdown Spectroscopy
合作研究:激光诱导击穿光谱化学分析的迁移学习
  • 批准号:
    1306133
  • 财政年份:
    2013
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Building Analytical Competence for Geoscience Students through use of Spectroscopic Tools
通过使用光谱工具培养地球科学学生的分析能力
  • 批准号:
    1140312
  • 财政年份:
    2012
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Effects of Composition and Cooling Rate on Fe XANES Glass Calibrations
合作研究:成分和冷却速率对 Fe XANES 玻璃校准的影响
  • 批准号:
    1219761
  • 财政年份:
    2012
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Scaffolding Effective Practice for Use of Animations in Teaching Mineralogy and Physical Geology
动画在矿物学和自然地质学教学中运用的有效实践
  • 批准号:
    0837212
  • 财政年份:
    2009
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
RUI: Collaborative Research: Redox Ratios by Fe-XANES
RUI:合作研究:Fe-XANES 的氧化还原比
  • 批准号:
    0809459
  • 财政年份:
    2008
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
RUI: Collaborative Research: Improvements in the Application of the Mossbauer Effect to Studies of Minerals
RUI:合作研究:穆斯堡尔效应在矿物研究中应用的改进
  • 批准号:
    0439161
  • 财政年份:
    2005
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

LTREB: Collaborative Research: Long-term changes in peatland C fluxes and the interactive role of altered hydrology, vegetation, and redox supply in a changing climate
LTREB:合作研究:泥炭地碳通量的长期变化以及气候变化中水文、植被和氧化还原供应变化的相互作用
  • 批准号:
    2411998
  • 财政年份:
    2024
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: Designing Solid Boosters and Electrolytes for Redox-Targeting Flow Batteries
合作研究:为氧化还原目标液流电池设计固体助推器和电解质
  • 批准号:
    2329651
  • 财政年份:
    2024
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Designing Solid Boosters and Electrolytes for Redox-Targeting Flow Batteries
合作研究:为氧化还原目标液流电池设计固体助推器和电解质
  • 批准号:
    2329652
  • 财政年份:
    2024
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Catholyte Molecular Design For Non-aqueous Mg-organic Hybrid Redox Flow Batteries
合作研究:非水镁有机混合氧化还原液流电池的阴极电解液分子设计
  • 批准号:
    2419938
  • 财政年份:
    2024
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Verification of Atmospheric Mercury Redox Rates
合作研究:大气汞氧化还原率的验证
  • 批准号:
    2321380
  • 财政年份:
    2023
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Rational design of redox-responsive materials for critical element separations
合作研究:DMREF:用于关键元素分离的氧化还原响应材料的合理设计
  • 批准号:
    2323989
  • 财政年份:
    2023
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: GLOW: Iron Redox Reactions in Magma Oceans and Differentiation of Rocky Planets
合作研究:GLOW:岩浆海洋中的铁氧化还原反应和岩石行星的分异
  • 批准号:
    2317025
  • 财政年份:
    2023
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Scalable Redox Reactions in Biomanufacturing
合作研究:在生物制造中实现可扩展的氧化还原反应
  • 批准号:
    2328146
  • 财政年份:
    2023
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Scalable Redox Reactions in Biomanufacturing
合作研究:在生物制造中实现可扩展的氧化还原反应
  • 批准号:
    2328145
  • 财政年份:
    2023
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Verification of Atmospheric Mercury Redox Rates
合作研究:大气汞氧化还原率的验证
  • 批准号:
    2321379
  • 财政年份:
    2023
  • 资助金额:
    $ 27.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了