ABI Development: CAFE for very large comparative genomic datasets
ABI 开发:用于非常大的比较基因组数据集的 CAFE
基本信息
- 批准号:1564611
- 负责人:
- 金额:$ 79.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-15 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Genome sequencing projects have revealed frequent gains and losses of genes between species. These changes have been shown to be responsible for morphological, physiological, and behavioral differences, and to contribute to the diversity observed in nature. Advances in sequencing technology are making new genome data available at faster rates than ever before. As the number of species with sequenced genomes grows, so will the number of researchers wanting to take advantage of these valuable resources. They will come from a wide range of biological fields, and have an equally wide range of experience with computational tools. CAFE (Computational Analysis of gene Family Evolution) is a software package that allows researchers to better understand rates of gene gain and loss. This project will result in a version of CAFE that adds to the national infrastructure by enabling new biological discoveries to the benefit of scientists working in many fields. CAFE will be a useful tool in science education, and will also improve and accelerate biological research that can be expected to have multiple societal benefits, including understanding the genetic basis for important biological phenotypes. A vigorous outreach and information dissemination plan will ensure that researchers and faculty engaged in research education are aware of CAFE and able to use it effectively, and will promote the development of a technology-savvy 21st century biology research community.Studies of gene families are essential to a number of research areas, including gene regulation, human disease, and evolutionary genomics. CAFE enables these and other studies into cutting-edge areas by providing a likelihood method for analyzing gene gain and loss over a phylogeny. This method has been shown to work well with the error-prone genome assemblies currently available for most organisms, as well as when analyzing dozens of genomes at a time. This project will extend these capabilities to hundreds or thousands of genomes. To accomplish this goal, several of the maximum likelihood methodologies implemented by CAFE will be re-designed. These changes will include allowing rate variation among gene families, optimizing likelihood calculations on trees, and improving specification of several probability distributions used by these calculations. The quality of the code will be enhanced through best practices in software engineering and the development of better, faster, and more scalable supercomputer versions of the software. All software will be available at www.indiana.edu/~hahnlab/.
基因组测序项目揭示了物种之间基因的频繁获得和丢失。这些变化已被证明是负责形态,生理和行为的差异,并有助于在自然界中观察到的多样性。测序技术的进步使新的基因组数据比以往任何时候都更快。随着拥有测序基因组的物种数量的增长,想要利用这些宝贵资源的研究人员也会越来越多。他们将来自广泛的生物学领域,并拥有同样广泛的计算工具经验。CAFE(基因家族进化的计算分析)是一个软件包,使研究人员能够更好地了解基因获得和丢失的速度。 该项目将产生一个CAFE版本,通过使新的生物发现有利于在许多领域工作的科学家,增加国家基础设施。CAFE将是科学教育的一个有用工具,也将改善和加速生物学研究,预计这些研究将产生多种社会效益,包括了解重要生物表型的遗传基础。一个强有力的推广和信息传播计划将确保从事研究教育的研究人员和教师了解CAFE并能够有效地使用它,并将促进技术娴熟的21世纪世纪生物学研究社区的发展。基因家族的研究对许多研究领域至关重要,包括基因调控,人类疾病和进化基因组学。CAFE通过提供一种可能性方法来分析遗传学中的基因获得和损失,使这些和其他研究能够进入前沿领域。这种方法已被证明与目前大多数生物体可用的易错基因组组装以及一次分析数十个基因组时工作良好。该项目将把这些能力扩展到数百或数千个基因组。为了实现这一目标,将重新设计CAFE实施的几种最大似然方法。这些变化将包括允许基因家族之间的速率变化,优化树上的似然计算,以及改进这些计算所使用的几种概率分布的规范。代码的质量将通过软件工程的最佳实践和开发更好、更快、更可扩展的超级计算机版本的软件来提高。所有软件均可在www.indiana.edu/~hahnlab/上获得。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Hahn其他文献
Inconsistency of parsimony under the multispecies coalescent
多物种合并下简约性的不一致
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Daniel Rickert;Wai;Matthew Hahn - 通讯作者:
Matthew Hahn
Transdisciplinary Research as a Means of Protecting Human Health, Ecosystems and Climate by Engaging People to Act on Air Pollution
跨学科研究作为通过让人们对空气污染采取行动来保护人类健康、生态系统和气候的一种手段
- DOI:
10.1079/onehealthcases.2024.0002 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
P. Büker;Sarah E. West;Cressida Bowyer;William Apondo;S. Cinderby;C. Gray;Matthew Hahn;Fiona Lambe;Miranda Loh;Alexander J. Medcalf;C. Muhoza;Kanyiva Muindi;T. Njoora;M. Twigg;Charlotte Waelde;Anna Walnycki;Megan Wainwright;Jana Wendler;Mike Wilson;Heather D. Price - 通讯作者:
Heather D. Price
Matthew Hahn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Hahn', 18)}}的其他基金
CAGEE: Computational analysis of gene expression evolution
CAGEE:基因表达进化的计算分析
- 批准号:
2146866 - 财政年份:2022
- 资助金额:
$ 79.43万 - 项目类别:
Standard Grant
Evolutionary inference in the presence of gene tree discordance
存在基因树不一致时的进化推理
- 批准号:
1936187 - 财政年份:2020
- 资助金额:
$ 79.43万 - 项目类别:
Standard Grant
EAGER: Genome construction in non-model organisms using recombinant populations
EAGER:使用重组群体在非模式生物中构建基因组
- 批准号:
1249633 - 财政年份:2012
- 资助金额:
$ 79.43万 - 项目类别:
Continuing Grant
CAREER: Computational and Statistical Genomics of Gene Families
职业:基因家族的计算和统计基因组学
- 批准号:
0845494 - 财政年份:2009
- 资助金额:
$ 79.43万 - 项目类别:
Standard Grant
Comparative Genomics of Gene Family Evolution
基因家族进化的比较基因组学
- 批准号:
0528465 - 财政年份:2006
- 资助金额:
$ 79.43万 - 项目类别:
Standard Grant
Statistical and Computational Methods for the Study of Gene Families
基因家族研究的统计和计算方法
- 批准号:
0543586 - 财政年份:2006
- 资助金额:
$ 79.43万 - 项目类别:
Standard Grant
Postdoctoral Research Fellowship in Interdisciplinary Informatics for FY 2003
2003财年跨学科信息学博士后研究奖学金
- 批准号:
0305994 - 财政年份:2003
- 资助金额:
$ 79.43万 - 项目类别:
Fellowship Award
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Development of a new solid tritium breeder blanket
新型固体氚增殖毯的研制
- 批准号:
2908923 - 财政年份:2027
- 资助金额:
$ 79.43万 - 项目类别:
Studentship
Optimal utility-based design of oncology clinical development programmes
基于效用的肿瘤学临床开发项目的优化设计
- 批准号:
2734768 - 财政年份:2026
- 资助金额:
$ 79.43万 - 项目类别:
Studentship
REU Site: Microbial Biofilm Development, Resistance, & Community Structure
REU 网站:微生物生物膜的发展、耐药性、
- 批准号:
2349311 - 财政年份:2025
- 资助金额:
$ 79.43万 - 项目类别:
Continuing Grant
SoundDecisions - Musical Listening, Decision Making, And Equitable Development In The Mekong Delta
SoundDecisions - 湄公河三角洲的音乐聆听、决策和公平发展
- 批准号:
EP/Z000424/1 - 财政年份:2025
- 资助金额:
$ 79.43万 - 项目类别:
Research Grant
Bio-MATSUPER: Development of high-performance supercapacitors based on bio-based carbon materials
Bio-MATSUPER:开发基于生物基碳材料的高性能超级电容器
- 批准号:
EP/Z001013/1 - 财政年份:2025
- 资助金额:
$ 79.43万 - 项目类别:
Fellowship
Development of a Cell-Based Assay for Tetanus Vaccine Quality Control
破伤风疫苗质量控制细胞检测方法的开发
- 批准号:
10101986 - 财政年份:2024
- 资助金额:
$ 79.43万 - 项目类别:
Collaborative R&D
HURR — Platform Development
HURR – 平台开发
- 批准号:
10103254 - 财政年份:2024
- 资助金额:
$ 79.43万 - 项目类别:
Investment Accelerator
Automatic battery swapping cabinet development for scalability of e-mobility in Uganda
自动电池交换柜开发,以提高乌干达电动汽车的可扩展性
- 批准号:
10080435 - 财政年份:2024
- 资助金额:
$ 79.43万 - 项目类别:
Collaborative R&D
Development of digital diagnostics services for Parkinson’s disease
开发帕金森病数字诊断服务
- 批准号:
10086932 - 财政年份:2024
- 资助金额:
$ 79.43万 - 项目类别:
Collaborative R&D
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
- 批准号:
10086990 - 财政年份:2024
- 资助金额:
$ 79.43万 - 项目类别:
Collaborative R&D