CAGEE: Computational analysis of gene expression evolution
CAGEE:基因表达进化的计算分析
基本信息
- 批准号:2146866
- 负责人:
- 金额:$ 89.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Biological advances have revealed that many traits are controlled by the amount of a gene produced in each cell, not just the sequence of each gene and protein. Genes can differ in these expression levels between different tissues within the same organism or between species in the same tissue. Understanding how these levels change—and how they control the appearance and function of organisms—is a key challenge for current research. This project will develop new methods for understanding gene expression changes between tissues and species, as well as how these changes are coordinated. The research applies new statistical approaches to produce open-source software for carrying out the analyses. The software will allow all scientists to be able to use these new tools on multiple platforms, contributing to the national cyberinfrastructure. This work also will improve and accelerate research with multiple societal benefits, including enabling new biological discoveries. This project will support the training of a postdoctoral researcher, graduate students, and undergraduates from groups that are underrepresented in science and technology careers. A classroom lesson plan and computer lab on understanding evolutionary trees will be developed and distributed to partner institutions.Changes in gene expression have been shown to be responsible for many differences between species, and recent technological advances mean that such data are easy to collect, even in non-model organisms. By measuring expression levels of the same gene in multiple species, we can begin to understand the history of changes in gene expression across organisms. By measuring expression in thousands of genes, we can further understand the mechanisms and modes by which gene expression evolves. This research develops a new software package (CAGEE) for studying gene expression evolution across a phylogenetic tree. The statistical approach developed here also makes it possible to study multiple tissues or sexes in a single framework, allowing us to make statistically rigorous inferences about differences in the rates of evolution among samples. Integrating these tools into a single software package available on multiple platforms enables these methods to be applied by a wide group of users.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物学的进步表明,许多性状是由每个细胞中产生的基因数量控制的,而不仅仅是每个基因和蛋白质的序列。基因在相同生物体内的不同组织之间或相同组织中的物种之间的这些表达水平可以不同。了解这些水平如何变化以及它们如何控制生物体的外观和功能是当前研究的关键挑战。该项目将开发新的方法来了解组织和物种之间的基因表达变化,以及这些变化是如何协调的。该研究采用新的统计方法来制作用于进行分析的开源软件。该软件将使所有科学家能够在多个平台上使用这些新工具,为国家网络基础设施做出贡献。这项工作还将改善和加速具有多种社会效益的研究,包括实现新的生物学发现。该项目将支持培养一名博士后研究员、研究生和本科生,他们来自科学和技术职业中代表性不足的群体。将制定一个关于理解进化树的课堂教学计划和计算机实验室,并分发给伙伴机构。基因表达的变化已被证明是物种之间许多差异的原因,最近的技术进步意味着这类数据很容易收集,即使是在非模式生物中。通过测量同一基因在多个物种中的表达水平,我们可以开始了解生物体间基因表达变化的历史。通过测量数千个基因的表达,我们可以进一步了解基因表达进化的机制和模式。本研究开发了一个新的软件包(CAGEE),用于研究基因表达进化的系统发育树。这里开发的统计方法也使得在一个框架中研究多个组织或性别成为可能,使我们能够对样本之间进化速率的差异进行统计学上的严格推断。将这些工具集成到一个可在多个平台上使用的软件包中,使这些方法能够被广泛的用户群应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Hahn其他文献
Inconsistency of parsimony under the multispecies coalescent
多物种合并下简约性的不一致
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Daniel Rickert;Wai;Matthew Hahn - 通讯作者:
Matthew Hahn
Transdisciplinary Research as a Means of Protecting Human Health, Ecosystems and Climate by Engaging People to Act on Air Pollution
跨学科研究作为通过让人们对空气污染采取行动来保护人类健康、生态系统和气候的一种手段
- DOI:
10.1079/onehealthcases.2024.0002 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
P. Büker;Sarah E. West;Cressida Bowyer;William Apondo;S. Cinderby;C. Gray;Matthew Hahn;Fiona Lambe;Miranda Loh;Alexander J. Medcalf;C. Muhoza;Kanyiva Muindi;T. Njoora;M. Twigg;Charlotte Waelde;Anna Walnycki;Megan Wainwright;Jana Wendler;Mike Wilson;Heather D. Price - 通讯作者:
Heather D. Price
Matthew Hahn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Hahn', 18)}}的其他基金
Evolutionary inference in the presence of gene tree discordance
存在基因树不一致时的进化推理
- 批准号:
1936187 - 财政年份:2020
- 资助金额:
$ 89.25万 - 项目类别:
Standard Grant
ABI Development: CAFE for very large comparative genomic datasets
ABI 开发:用于非常大的比较基因组数据集的 CAFE
- 批准号:
1564611 - 财政年份:2016
- 资助金额:
$ 89.25万 - 项目类别:
Standard Grant
EAGER: Genome construction in non-model organisms using recombinant populations
EAGER:使用重组群体在非模式生物中构建基因组
- 批准号:
1249633 - 财政年份:2012
- 资助金额:
$ 89.25万 - 项目类别:
Continuing Grant
CAREER: Computational and Statistical Genomics of Gene Families
职业:基因家族的计算和统计基因组学
- 批准号:
0845494 - 财政年份:2009
- 资助金额:
$ 89.25万 - 项目类别:
Standard Grant
Comparative Genomics of Gene Family Evolution
基因家族进化的比较基因组学
- 批准号:
0528465 - 财政年份:2006
- 资助金额:
$ 89.25万 - 项目类别:
Standard Grant
Statistical and Computational Methods for the Study of Gene Families
基因家族研究的统计和计算方法
- 批准号:
0543586 - 财政年份:2006
- 资助金额:
$ 89.25万 - 项目类别:
Standard Grant
Postdoctoral Research Fellowship in Interdisciplinary Informatics for FY 2003
2003财年跨学科信息学博士后研究奖学金
- 批准号:
0305994 - 财政年份:2003
- 资助金额:
$ 89.25万 - 项目类别:
Fellowship Award
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
- 批准号:
2337678 - 财政年份:2024
- 资助金额:
$ 89.25万 - 项目类别:
Continuing Grant
Computational approach to security dilemma: understanding state rivalry through multilingual longitudinal analysis of foreign news
解决安全困境的计算方法:通过外国新闻的多语言纵向分析来理解国家竞争
- 批准号:
23K25490 - 财政年份:2024
- 资助金额:
$ 89.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CASCADE: Computational Analysis of Semantic Change Across Different Environments
CASCADE:不同环境下语义变化的计算分析
- 批准号:
EP/Y031075/1 - 财政年份:2024
- 资助金额:
$ 89.25万 - 项目类别:
Research Grant
Richter - Advancing Construction Design Efficiency through computational analysis: Revolutionising Working Platforms within construction industry
Richter - 通过计算分析提高建筑设计效率:彻底改变建筑行业的工作平台
- 批准号:
10089025 - 财政年份:2024
- 资助金额:
$ 89.25万 - 项目类别:
Collaborative R&D
Exploring the Deep Universe by Computational Analysis of Data from Observations
通过观测数据的计算分析探索宇宙深处
- 批准号:
EP/Y031032/1 - 财政年份:2024
- 资助金额:
$ 89.25万 - 项目类别:
Research Grant
Computational MultiPhysics Analysis of 3D Structural Damage and Failure
3D 结构损伤和失效的计算多物理场分析
- 批准号:
DP240101471 - 财政年份:2024
- 资助金额:
$ 89.25万 - 项目类别:
Discovery Projects
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 89.25万 - 项目类别:
Studentship
Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data
用于多层次和多尺度网络数据融合和分析的新分析和计算方法
- 批准号:
2311297 - 财政年份:2023
- 资助金额:
$ 89.25万 - 项目类别:
Standard Grant