III: Small: Collaborative Research: Probabilistic Models using Generalized Exponential Families
III:小:协作研究:使用广义指数族的概率模型
基本信息
- 批准号:1564765
- 负责人:
- 金额:$ 11.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
III: Small: Collaborative Research: Probabilistic Models using Generalized Exponential FamiliesSwaminathan Vishwanathan, Purdue University; Manfred Warmuth, University of California, Santa CruzMachine learning is currently indispensible for building predictive models from massive data sets. A large majority of widely used machine learning algorithms are based on minimizing a convex loss function. A fundamental problem with all such models is that they are not robust to outliers. To address this limitation, this project develops probabilistic models based on a parametric family of distributions, namely, the t-exponential family, that lead to quasi-convex loss functions and yield models that are robust to outliers. The key challenge when working with the t-exponential family of distributions, as in the case of the exponential family, is to compute the log-partition function and perform inference efficiently. The project addresses this challenge in two specific cases. For problems with small number of classes exact iterative schemes are being developed. For problems where the number of classes is exponentially large, approximate inference techniques are being developed by extending variational methods. In partnership with Google, some of the data mining algorithms resulting from this project are being applied to a challenging real-world problem of recognizing text in photos (the PhotoOCR problem). The project offers opportunities for research-based advanced training of graduate students as well as research opportuinities for undergraduates in machine learning and data mining. Algorithms for constructing predictive models from data that are robust in the presence of outliers are likely to find use in a broad range of applications. Open source implementions of algorithms, publications, and data sets resulting from the project are being made available through the project web page at: http://learning.stat.purdue.edu/wiki/tentropy/start
协同研究:基于广义指数族的概率模型[j],普渡大学;Manfred Warmuth,加州大学圣克鲁斯分校目前,机器学习对于从大量数据集构建预测模型是不可或缺的。大多数广泛使用的机器学习算法都是基于最小化凸损失函数的。所有这类模型的一个根本问题是,它们对异常值不具有鲁棒性。为了解决这一限制,该项目开发了基于参数分布族的概率模型,即t指数族,它导致拟凸损失函数和对异常值具有鲁棒性的产量模型。在处理t指数族分布时,与指数族的情况一样,关键的挑战是计算对数配分函数并有效地执行推理。该项目在两个具体案例中解决了这一挑战。对于类数较少的问题,正在开发精确的迭代方案。对于类数呈指数级增长的问题,通过扩展变分方法发展了近似推理技术。在与谷歌的合作中,这个项目产生的一些数据挖掘算法正被应用于一个具有挑战性的现实问题,即识别照片中的文本(photocr问题)。该项目为研究生提供了基于研究的高级培训机会,也为本科生提供了机器学习和数据挖掘方面的研究机会。从存在异常值的数据中构建预测模型的算法可能会在广泛的应用中找到用途。该项目产生的算法、出版物和数据集的开源实现可通过项目网页:http://learning.stat.purdue.edu/wiki/tentropy/start获得
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vishwanathan Swaminathan其他文献
Vishwanathan Swaminathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vishwanathan Swaminathan', 18)}}的其他基金
III: Small: Parametric Statistical Models to Support Statistical Hypothesis Testing over Graphs
III:小型:支持图形统计假设检验的参数统计模型
- 批准号:
1219015 - 财政年份:2012
- 资助金额:
$ 11.46万 - 项目类别:
Continuing Grant
29th International Conference on Machine Learning (ICML 2012)
第29届国际机器学习会议(ICML 2012)
- 批准号:
1212370 - 财政年份:2012
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Probabilistic Models using Generalized Exponential Families
III:小:协作研究:使用广义指数族的概率模型
- 批准号:
1117705 - 财政年份:2011
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
The 2011 Machine Learning Summer School at Purdue University
普渡大学 2011 年机器学习暑期学校
- 批准号:
1115185 - 财政年份:2011
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
RI: Small: Algorithms for Sampling Similar Graphs Using Subgraph Signatures
RI:小:使用子图签名对相似图进行采样的算法
- 批准号:
0916686 - 财政年份:2009
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336769 - 财政年份:2024
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336768 - 财政年份:2024
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
- 批准号:
2311990 - 财政年份:2023
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324770 - 财政年份:2023
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311598 - 财政年份:2023
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
- 批准号:
2316306 - 财政年份:2023
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324769 - 财政年份:2023
- 资助金额:
$ 11.46万 - 项目类别:
Standard Grant