ABI Innovation: Next Generation Quantitative RNA Sequence Analysis

ABI 创新:下一代定量 RNA 序列分析

基本信息

  • 批准号:
    1565137
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

The proper function and health of an organism rests on the correct expression of it's genes: in the first step in expression, RNA molecules are produced from the genes in a number of possible forms. Accurately determining how much RNA is produced and the structure of that RNA are the goals of this research. Many experiments do high throughput sequencing of RNA to show how much gene expression is taking place, what parts of the genomic DNA are making the RNA, and how DNA regions combine to make functional RNA. There are many steps required to process RNA and get sequence data, leading to a lot of noise in the data. Errors also occur when trying to compare the RNA sequence to a genome sequence that has gaps in it or that was not correctly assembled. The effect of the noise and errors is that calculating how much of each type of RNA is present is not very accurate, which can give misleading results. The aim of this research is to develop methods that overcome the technical problems so that good quantitation and better understanding of biological processes are possible. The new algorithms will be incorporated into software packages available for use by interested members of the scientific community, so that the benefits of the improvements will be widely shared. In addition, better analysis of RNA sequencing experiments is expected to have a positive impact on many scientific disciplines, from basic cell biology to development of clinical tests. High-throughput sequencing of RNA has proven itself as an invaluable tool for gene discovery and the annotation of new isoforms for both coding and non-coding genes. However, it is still falls short on its ultimate promise of providing quantitative and comparative measures of transcript abundance. This gap is due to a series of technical factors. Among them are biases introduced by employing an inexact reference genome as the standard for associating sequence data to transcripts, noise due to misalignments causes by paralogous sequence such as pseudogenes, biases introduced by unannotated transcripts, sense/antisense transcript interference, and origin bias due to aligning diploid data to a haploid model. The objective of the project is to develop methods that either overcome or side-step all of these factors in an effort to deliver on the promise of RNA sequencing for quantitative analysis. Our research plan includes developing computational models and efficient algorithms for simultaneous rebalancing reads between genes and pseudogenes and genes within gene families, robust alignment-free methods for estimating transcript abundances and allele-specific expression patterns, and de novo approach for isoform and novel transcript discovery using DNAseq and RNAseq from a single sample. The proposed computational tools will be integrated into software packages under common application framework adopted by the broad scientific community. The results of the project can be found at http://www.cs.ucla.edu/~weiwang/NSF1565137.html
生物体的正常功能和健康取决于其基因的正确表达:在表达的第一步,RNA分子以多种可能的形式从基因中产生。准确确定产生了多少RNA以及RNA的结构是这项研究的目标。许多实验对RNA进行高通量测序,以显示发生了多少基因表达,基因组DNA的哪些部分正在制造RNA,以及DNA区域如何联合收割机来制造功能性RNA。处理RNA和获得序列数据需要很多步骤,导致数据中存在大量噪声。当试图将RNA序列与其中有缺口或未正确组装的基因组序列进行比较时,也会发生错误。噪声和误差的影响是,计算每种类型的RNA存在的数量并不是很准确,这可能会产生误导性的结果。本研究的目的是开发克服技术问题的方法,以便能够更好地定量和更好地理解生物过程。新的算法将被纳入软件包,供科学界感兴趣的成员使用,以便广泛分享改进的好处。此外,RNA测序实验的更好分析预计将对许多科学学科产生积极影响,从基础细胞生物学到临床测试的发展。 RNA的高通量测序已被证明是基因发现和编码和非编码基因的新亚型注释的宝贵工具。然而,它仍然是福尔斯短的最终承诺,提供定量和比较措施的转录丰度。这一差距是由一系列技术因素造成的。其中包括通过采用不精确的参考基因组作为将序列数据与转录本相关联的标准而引入的偏差、由于旁系同源序列(如假基因)引起的错配而引起的噪声、由未注释的转录本引入的偏差、有义/反义转录本干扰以及由于将二倍体数据与单倍体模型比对而引起的起源偏差。该项目的目标是开发克服或回避所有这些因素的方法,以实现RNA测序定量分析的承诺。我们的研究计划包括开发计算模型和有效的算法,用于同时重新平衡基因和假基因以及基因家族内的基因之间的读取,用于估计转录本丰度和等位基因特异性表达模式的稳健的无干扰方法,以及使用DNAseq和RNAseq从单个样品中发现异构体和新转录本的从头方法。拟议的计算工具将被整合到软件包中,并在广泛的科学界采用的通用应用框架下使用。该项目的结果可以在http://www.cs.ucla.edu/~weiwang/NSF1565137.html上找到

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Wang其他文献

A High-Performance Isolated High-Frequency Converter With Optimal Switch Impedance
具有最佳开关阻抗的高性能隔离式高频转换器
Cambrian magmatic flare-up, central Tibet: Magma mixing in proto-Tethyan arc along north Gondwanan margin
西藏中部寒武纪岩浆爆发:沿冈瓦南边缘北缘的原特提斯弧中岩浆混合
  • DOI:
    10.1130/b35859.1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Peiyuan Hu;Qingguo Zhai;Peter A. Cawood;Guochun Zhao;Jun Wang;Yue Tang;Zhicai Zhu;Wei Wang;Hao Wu
  • 通讯作者:
    Hao Wu
Spatial resolution comparison of AC-SECM with SECM and their characterization of self-healing performance of hexamethylene diisocyanate trimer microcapsule coatings
AC-SECM与SECM的空间分辨率比较及其对六亚甲基二异氰酸酯三聚体微胶囊涂层自修复性能的表征
  • DOI:
    10.1039/c5ta00529a
  • 发表时间:
    2015-02
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Wei Wang;Likun Xu;Huyuan Sun;Xiangbo Li;Shouhuan Zhao;Weining Zhang
  • 通讯作者:
    Weining Zhang
Application of machine learning algorithms in lane-changing model for intelligent vehicles exiting to off-ramp
机器学习算法在智能车辆驶出匝道换道模型中的应用
  • DOI:
    10.1080/23249935.2020.1746861
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Changyin Dong;Hao Wang;Ye Li;Xiaomeng Shi;Daiheng Ni;Wei Wang
  • 通讯作者:
    Wei Wang
Financial development and wage income: Evidence from the global football market
金融发展与工资收入:来自全球足球市场的证据
  • DOI:
    10.1016/j.jbankfin.2023.106813
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Wei Wang;Haoxi Yang;Xi Wang
  • 通讯作者:
    Xi Wang

Wei Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Wang', 18)}}的其他基金

CAREER: Harnessing the Interplay of Morphology, Viscoelasticity, and Surface-Active Agents to Modulate Soft Wetting
职业:利用形态、粘弹性和表面活性剂的相互作用来调节软润湿
  • 批准号:
    2336504
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
An Educational Tool for Teaching and Learning Concurrent Computer Programming Techniques
用于教授和学习并行计算机编程技术的教育工具
  • 批准号:
    2215359
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
  • 批准号:
    2155096
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Enhancing Security and Privacy of Augmented Reality Mobile Applications through Software Behavior Analysis
合作研究:EAGER:通过软件行为分析增强增强现实移动应用程序的安全性和隐私性
  • 批准号:
    2221843
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
PIPP Phase I: An End-to-End Pandemic Early Warning System by Harnessing Open-source Intelligence
PIPP 第一阶段:利用开源情报的端到端流行病预警系统
  • 批准号:
    2200274
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Enhancing Programming and Machine Learning Education for Students with Visual Impairments through the Use of Compilers, AI and Cloud Technologies
通过使用编译器、人工智能和云技术加强对视力障碍学生的编程和机器学习教育
  • 批准号:
    2202632
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: A Bioinspired Approach towards Sustainable Membranes for Resilient Brine Treatment
合作研究:用于弹性盐水处理的可持续膜的仿生方法
  • 批准号:
    2226501
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Collaborative Machine-Learning-Centric Data Analytics at Scale
III:媒介:协作研究:以机器学习为中心的大规模协作数据分析
  • 批准号:
    2106859
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
RAPID: Dynamic Graph Neural Networks for Modeling and Monitoring COVID-19 Pandemic
RAPID:用于建模和监测 COVID-19 大流行的动态图神经网络
  • 批准号:
    2031187
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research; RUI: Non-Orthogonal Multiple Access Pricing for Wireless Multimedia Communications
合作研究;
  • 批准号:
    2010284
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似海外基金

Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Operating Grants
HEALTH INNOVATION NEXT GENERATION PAYMENT&PRICING MODELS: HI- PRIX PROJECT
健康创新下一代支付
  • 批准号:
    10062152
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    EU-Funded
Health Innovation Next Generation Payment & Pricing Models (HI-PRIX)
健康创新下一代支付
  • 批准号:
    10058086
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    EU-Funded
HEALTH INNOVATION NEXT GENERATION PAYMENT & PRICING MODELS
健康创新下一代支付
  • 批准号:
    10062415
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    EU-Funded
Boosting innovation in breeding for the next generation of legume crops for Europe
促进欧洲下一代豆类作物育种创新
  • 批准号:
    10083603
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    EU-Funded
Boosting innovation in breeding for the next generation of legume crops for Europe
促进欧洲下一代豆类作物育种创新
  • 批准号:
    10077978
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    EU-Funded
Legume Generation: Boosting innovation in breeding for the next generation of legume crops for Europe
豆类世代:促进欧洲下一代豆类作物育种创新
  • 批准号:
    10079743
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    EU-Funded
Boosting innovation in breeding for the next generation of legume crops for Europe
促进欧洲下一代豆类作物育种创新
  • 批准号:
    10078428
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    EU-Funded
Legume Generation: Boosting innovation in breeding for the next generation of legume crops for Europe
豆类世代:促进欧洲下一代豆类作物育种创新
  • 批准号:
    10073595
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    EU-Funded
IUCRC Planning Grant Virginia Tech: Center for Wireless Innovation towards Secure, Pervasive, Efficient and Resilient Next G Networks (WISPER)
IUCRC 规划拨款弗吉尼亚理工大学:实现安全、普遍、高效和有弹性的下一代网络 (WISPER) 的无线创新中心
  • 批准号:
    2209662
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了