Singularities and Moduli Theory
奇点和模理论
基本信息
- 批准号:1565352
- 负责人:
- 金额:$ 49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is in the field of algebraic geometry, one of the oldest parts of modern mathematics, but one that blossomed to the point where it has solved problems that have stood for centuries. In its simplest form it treats figures defined in the plane by polynomials. Today, the field uses methods not only from algebra, but also from analysis and topology, and conversely it is extensively used in those fields. Moreover it has proved itself useful in fields as diverse as physics, theoretical computer science, cryptography, coding theory, and robotics. A central problem in algebraic geometry is the classification of all geometric objects. In turn, an important part of classification theory is the theory of moduli. The latter's core idea is that one does not only want to understand these objects, but also understand the way they can be deformed. Moduli spaces play a very important role in theoretical physics: studying curves on moduli spaces provides information on how an object is changing in space-time. One of the foci of this project is on compact moduli spaces, which give additional information about singular deformations, ones that are essentially different from others. The investigator is also involved in promoting mathematics to high school students; he and fellow directors of the Summer Institute for Mathematics at the University of Washington make special efforts to involve women at all levels of the program, from students through teaching assistants to instructors, to reinforce their leadership roles in mathematics.This project concerns several topics in higher dimensional algebraic geometry, especially moduli theory and singularities. The overarching theme of the research is centered on compact moduli spaces of stable log varieties, an important area that is still in the developmental stage. In particular, even the correct moduli functor needs to be identified, and most of the research is motivated by understanding the basic properties of these moduli spaces. This involves understanding the singularities that can occur on stable log varieties. Important classes of singularities in this regard are that of rational singularities and other singularities of the minimal model program. The investigator will work on advancing our currently very limited understanding of these singularities in arbitrary characteristic. The project also aims to develop cohomological methods to deal with rational pairs and thrifty resolutions in arbitrary characteristic. In particular, the investigator will study logarithmic versions of Hodge cohomology and of Grothendieck's fundamental class. Also stemming from the moduli project, the investigator plans to study properties of Du Bois singularities and Du Bois pairs. The main objectives of this part of the project are to develop a definition of these singularities that makes sense in arbitrary characteristic and to prove a subadjunction theorem for rational and Du Bois pairs.
这个研究项目是在代数几何领域,现代数学最古老的部分之一,但一个蓬勃发展的点,它已经解决了几个世纪以来的问题。在其最简单的形式,它对待的数字定义在平面上的多项式。今天,该领域使用的方法不仅来自代数,而且来自分析和拓扑学,相反,它被广泛用于这些领域。此外,它已被证明在物理学、理论计算机科学、密码学、编码理论和机器人学等不同领域都很有用。代数几何中的一个中心问题是所有几何对象的分类。反过来,分类理论的一个重要部分是模理论。后者的核心思想是,人们不仅要理解这些物体,还要理解它们变形的方式。模空间在理论物理学中起着非常重要的作用:研究模空间上的曲线提供了关于物体在时空中如何变化的信息。这个项目的焦点之一是紧模空间,它提供了关于奇异变形的额外信息,这些变形本质上不同于其他变形。 调查员还参与向高中生推广数学;他和华盛顿大学夏季数学研究所的主任们做出了特别的努力,让妇女参与到这个项目的各个层次,从学生到助教再到教师,以加强她们在数学中的领导作用。2这个项目涉及高维代数几何的几个主题,尤其是模理论和奇点。研究的首要主题是集中在紧凑的模空间的稳定的日志品种,一个重要的领域,仍处于发展阶段。特别是,甚至需要确定正确的模函子,并且大多数研究的动机是理解这些模空间的基本性质。这涉及了解稳定原木品种上可能发生的奇异性。在这方面,重要的奇点类是有理奇点和最小模型程序的其他奇点。研究人员将致力于推进我们目前非常有限的理解,这些奇异性的任意特性。该项目还旨在发展上同调方法来处理任意特征的有理对和节俭解决方案。特别是,调查员将研究对数版本的霍奇上同调和格罗滕迪克的基本类。同样源于模项目,研究人员计划研究杜波依斯奇点和杜波依斯对的性质。该项目的这一部分的主要目标是开发这些奇点的定义,使在任意特性的意义,并证明了有理和杜波依斯对subadjunction定理。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The minimal model program for b-log canonical divisors and applications
- DOI:10.1007/s00209-023-03205-w
- 发表时间:2017-07
- 期刊:
- 影响因子:0.8
- 作者:D. Chan;K. Chan;Louis de Thanhoffer de Völcsey-Louis-de-Thanhoffer-de-Völcsey-2210870146;C. Ingalls;K. Jabbusch;S'andor J. Kov'acs;Rajesh S. Kulkarni;Boris Lerner;Basil Nanayakkara;Shinnosuke Okawa;Michel van den Bergh
- 通讯作者:D. Chan;K. Chan;Louis de Thanhoffer de Völcsey-Louis-de-Thanhoffer-de-Völcsey-2210870146;C. Ingalls;K. Jabbusch;S'andor J. Kov'acs;Rajesh S. Kulkarni;Boris Lerner;Basil Nanayakkara;Shinnosuke Okawa;Michel van den Bergh
Singularities of low degree complete intersections
低度完全交集的奇点
- DOI:10.4310/maa.2017.v24.n1.a7
- 发表时间:2017
- 期刊:
- 影响因子:0.3
- 作者:Kovács, Sándor J.
- 通讯作者:Kovács, Sándor J.
Projectivity of the moduli space of stable log-varieties and subadditivity of log-Kodaira dimension
稳定对数簇模空间的投影性和对数小平维数的次可加性
- DOI:10.1090/jams/871
- 发表时间:2017
- 期刊:
- 影响因子:3.9
- 作者:Kovács, Sándor J;Patakfalvi, Zsolt
- 通讯作者:Patakfalvi, Zsolt
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandor Kovacs其他文献
Chest Port Placement with Use of the Single-incision Insertion Technique
- DOI:
10.1016/j.jvir.2009.07.035 - 发表时间:
2009-11-01 - 期刊:
- 影响因子:
- 作者:
Hearns W. Charles;Tiago Miguel;Sandor Kovacs;Arash Gohari;Joseph Arampulikan;Jeffrey W. McCann - 通讯作者:
Jeffrey W. McCann
DECOMPOSITION OF E-WAVE DECELERATION TIME INTO STIFFNESS AND RELAXATION COMPONENTS
- DOI:
10.1016/s0735-1097(13)60866-9 - 发表时间:
2013-03-12 - 期刊:
- 影响因子:
- 作者:
Sina Mossahebi;Sandor Kovacs - 通讯作者:
Sandor Kovacs
LONGITUDINAL AND TRANSVERSE IMPEDANCE CAN QUANTIFY LEFT VENTRICULAR DIASTOLIC FUNCTION
- DOI:
10.1016/s0735-1097(12)61064-x - 发表时间:
2012-03-27 - 期刊:
- 影响因子:
- 作者:
Erina Ghosh;Sandor Kovacs - 通讯作者:
Sandor Kovacs
DISTINGUISHING PSEUDONORMALIZED FROM NORMAL FILLING BY FRACTIONATING E-WAVE DECELERATION TIME INTO ITS STIFFNESS AND RELAXATION COMPONENTS
- DOI:
10.1016/s0735-1097(14)61191-8 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:
- 作者:
Sina Mossahebi;Sandor Kovacs - 通讯作者:
Sandor Kovacs
Cyclodextrin knowledgebase a web-based service managing CD-ligand complexation data
- DOI:
10.1007/s10822-010-9368-y - 发表时间:
2010-06-03 - 期刊:
- 影响因子:3.100
- 作者:
Eszter Hazai;Istvan Hazai;Laszlo Demko;Sandor Kovacs;David Malik;Peter Akli;Peter Hari;Julianna Szeman;Eva Fenyvesi;Edina Benes;Lajos Szente;Zsolt Bikadi - 通讯作者:
Zsolt Bikadi
Sandor Kovacs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandor Kovacs', 18)}}的其他基金
Singularities and Duality with Applications to Moduli Theory
奇点和对偶性及其在模理论中的应用
- 批准号:
2100389 - 财政年份:2021
- 资助金额:
$ 49万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1951376 - 财政年份:2020
- 资助金额:
$ 49万 - 项目类别:
Continuing Grant
Research in higher dimensional algebraic geometry
高维代数几何研究
- 批准号:
0856185 - 财政年份:2009
- 资助金额:
$ 49万 - 项目类别:
Continuing Grant
International travel support for US researchers to attend '60 Miles,' London, July 2008
为美国研究人员参加“60 英里”活动提供国际旅行支持,伦敦,2008 年 7 月
- 批准号:
0813494 - 财政年份:2008
- 资助金额:
$ 49万 - 项目类别:
Standard Grant
Log Canonical and Rational Singularities
对数规范奇点和有理奇点
- 批准号:
0196072 - 财政年份:2000
- 资助金额:
$ 49万 - 项目类别:
Standard Grant
Log Canonical and Rational Singularities
对数规范奇点和有理奇点
- 批准号:
9818357 - 财政年份:1999
- 资助金额:
$ 49万 - 项目类别:
Standard Grant
相似国自然基金
高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
- 批准号:11271070
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Singularities and Duality with Applications to Moduli Theory
奇点和对偶性及其在模理论中的应用
- 批准号:
2100389 - 财政年份:2021
- 资助金额:
$ 49万 - 项目类别:
Continuing Grant
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2018
- 资助金额:
$ 49万 - 项目类别:
Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2017
- 资助金额:
$ 49万 - 项目类别:
Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2016
- 资助金额:
$ 49万 - 项目类别:
Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2015
- 资助金额:
$ 49万 - 项目类别:
Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2014
- 资助金额:
$ 49万 - 项目类别:
Discovery Grants Program - Individual
Geometry of Moduli Spaces, Geometric Invariant Theory, and Deformations of Singularities
模空间几何、几何不变量理论和奇点变形
- 批准号:
1201286 - 财政年份:2012
- 资助金额:
$ 49万 - 项目类别:
Standard Grant
Geometry of Moduli Spaces, Geometric Invariant Theory, and Deformations of Singularities
模空间几何、几何不变量理论和奇点变形
- 批准号:
1259226 - 财政年份:2012
- 资助金额:
$ 49万 - 项目类别:
Standard Grant
Moduli theory of strongly pseudo-convex CR structure and its application to higher dimensional isolated singularities
强赝凸CR结构的模理论及其在高维孤立奇点中的应用
- 批准号:
17540087 - 财政年份:2005
- 资助金额:
$ 49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)