CAREER: Theory of Moduli
职业:模数理论
基本信息
- 批准号:0092165
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator studies problems in algebraic geometry related to families of higher dimensional varieties. The main goal of the project is to find good definitions of compact moduli functors, with special regard to the moduli theory of surfaces. As part of the moduli theory project special efforts are devoted to reflexive sheaves and their behavior with respect to morphisms in an effort to develop a theory that includes many results for reflexive sheaves of rank 1 that are similar to results already known for line bundles. This is very important in order to develop a moduli theory of singular varieties, which in turn is essential for geometrically meaningful compact moduli spaces. Another problem the investigator is studying is generalizations of Shafarevich's conjecture and its applications to the case of higher dimensional bases, in particular the problem of boundedness and rigidity for families of varieties of general type. This research is in the field of algebraic geometry, one of the oldest parts of modern mathematics, but one that blossomed to the point where it has solved problems that have stood for centuries. Originally, and still in its simplest form it treats figures defined in the plane by polynomials. Today, the field uses methods not only from algebra, but also from analysis and topology, and conversely it is extensively used in those fields. Moreover it has proved itself useful in fields as diverse as physics, theoretical computer science cryptography, coding theory and robotics. A central problem in algebraic geometry is the classification of all geometric objects. In turn an important part of classification theory is the theory of moduli. The latter's core idea is that one does not only want to understand these objects, but also understand the way they can be deformed. Moduli spaces play a very important role in theoretical physics. Studying curves on moduli spaces provides information on how an object is changing in space-time. This project focuses on compact moduli spaces. Those are extensions of moduli spaces in general and they give additional information about singular deformations, ones that are essentially different from others. Presently the existence of compact moduli spaces is known for low dimensional problems. The investigator is studying the higher dimensional case. As part of the project, but somewhat independent of the above, the investigator and his graduate students are running a website that works as a forum for graduate students and young researchers in algebraic geometry. Users of this website can pose questions that are likely to be known to experts but not available in the literature. The main goal of this project is to open a new venue for a larger number of students to access the knowledge of experts in the field helping to achieve a more equal opportunity environment. In addition, the collected database provides references to results that are too "small" to occupy an entire article, but too important to ignore, as well as a collection of potential research problems for graduate students.
调查研究问题的代数几何有关的家庭的高维品种。该项目的主要目标是找到紧模函子的良好定义,特别是关于曲面的模理论。作为模理论项目的一部分,特别努力致力于自反层及其关于态射的行为,以努力发展一种理论,该理论包括秩为1的自反层的许多结果,这些结果类似于已知的线丛结果。这是非常重要的,以发展一个模理论的奇异品种,这反过来是必不可少的几何意义紧模空间。另一个问题的调查研究是概括Shafarevich猜想及其应用的情况下,高维基地,特别是问题的有界性和刚性的家庭品种的一般类型。 这项研究是在代数几何领域,现代数学的最古老的部分之一,但一个蓬勃发展的地步,它已经解决了几个世纪以来的问题。最初,仍然在其最简单的形式,它对待的数字定义在平面上的多项式。今天,该领域使用的方法不仅来自代数,而且来自分析和拓扑学,相反,它被广泛用于这些领域。此外,它已被证明在物理学、理论计算机科学、密码学、编码理论和机器人学等不同领域都很有用。代数几何中的一个中心问题是所有几何对象的分类。分类理论的一个重要组成部分是模理论。后者的核心思想是,人们不仅要理解这些物体,还要理解它们变形的方式。模空间在理论物理中起着非常重要的作用。研究模空间上的曲线提供了关于物体在时空中如何变化的信息。这个项目的重点是紧模空间。这些是模空间的一般扩展,它们提供了关于奇异变形的额外信息,这些信息与其他信息有本质的不同。目前,对于低维问题,紧模空间的存在性是已知的。调查员正在研究更高维的情况。作为项目的一部分,但有点独立于上述,调查员和他的研究生正在运行一个网站,作为一个论坛的研究生和年轻的研究人员在代数几何。本网站的用户可以提出专家可能知道但文献中没有的问题。该项目的主要目标是为更多的学生开辟一个新的场所,以获得该领域专家的知识,帮助实现一个机会更加平等的环境。此外,收集的数据库提供了参考结果,这些结果太“小”,无法占据整篇文章,但太重要,不能忽视,以及为研究生收集潜在的研究问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandor Kovacs其他文献
Chest Port Placement with Use of the Single-incision Insertion Technique
- DOI:
10.1016/j.jvir.2009.07.035 - 发表时间:
2009-11-01 - 期刊:
- 影响因子:
- 作者:
Hearns W. Charles;Tiago Miguel;Sandor Kovacs;Arash Gohari;Joseph Arampulikan;Jeffrey W. McCann - 通讯作者:
Jeffrey W. McCann
DECOMPOSITION OF E-WAVE DECELERATION TIME INTO STIFFNESS AND RELAXATION COMPONENTS
- DOI:
10.1016/s0735-1097(13)60866-9 - 发表时间:
2013-03-12 - 期刊:
- 影响因子:
- 作者:
Sina Mossahebi;Sandor Kovacs - 通讯作者:
Sandor Kovacs
LONGITUDINAL AND TRANSVERSE IMPEDANCE CAN QUANTIFY LEFT VENTRICULAR DIASTOLIC FUNCTION
- DOI:
10.1016/s0735-1097(12)61064-x - 发表时间:
2012-03-27 - 期刊:
- 影响因子:
- 作者:
Erina Ghosh;Sandor Kovacs - 通讯作者:
Sandor Kovacs
DISTINGUISHING PSEUDONORMALIZED FROM NORMAL FILLING BY FRACTIONATING E-WAVE DECELERATION TIME INTO ITS STIFFNESS AND RELAXATION COMPONENTS
- DOI:
10.1016/s0735-1097(14)61191-8 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:
- 作者:
Sina Mossahebi;Sandor Kovacs - 通讯作者:
Sandor Kovacs
Cyclodextrin knowledgebase a web-based service managing CD-ligand complexation data
- DOI:
10.1007/s10822-010-9368-y - 发表时间:
2010-06-03 - 期刊:
- 影响因子:3.100
- 作者:
Eszter Hazai;Istvan Hazai;Laszlo Demko;Sandor Kovacs;David Malik;Peter Akli;Peter Hari;Julianna Szeman;Eva Fenyvesi;Edina Benes;Lajos Szente;Zsolt Bikadi - 通讯作者:
Zsolt Bikadi
Sandor Kovacs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandor Kovacs', 18)}}的其他基金
Singularities and Duality with Applications to Moduli Theory
奇点和对偶性及其在模理论中的应用
- 批准号:
2100389 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1951376 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Research in higher dimensional algebraic geometry
高维代数几何研究
- 批准号:
0856185 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
International travel support for US researchers to attend '60 Miles,' London, July 2008
为美国研究人员参加“60 英里”活动提供国际旅行支持,伦敦,2008 年 7 月
- 批准号:
0813494 - 财政年份:2008
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Log Canonical and Rational Singularities
对数规范奇点和有理奇点
- 批准号:
0196072 - 财政年份:2000
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Log Canonical and Rational Singularities
对数规范奇点和有理奇点
- 批准号:
9818357 - 财政年份:1999
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Study of moduli spaces of vacua of supersymmetric gauge theories by geometric representation theory
用几何表示理论研究超对称规范理论真空模空间
- 批准号:
23K03067 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Geometric representation theory and moduli spaces
会议:几何表示理论和模空间
- 批准号:
2328483 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Moduli Spaces and Galois Theory in Arithmetic Dynamics
算术动力学中的模空间和伽罗瓦理论
- 批准号:
2302394 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Quantized Lagrangian submanifolds of moduli spaces and representation theory
模空间的量化拉格朗日子流形和表示理论
- 批准号:
2302624 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Algebraic Geometry and Integrable Systems -- Moduli theory and Equations of Painleve type
代数几何与可积系统——模理论与Painleve型方程
- 批准号:
22H00094 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Moduli Spaces of Higgs Bundles, Gauge Theory, and Related Topics
希格斯丛集的模空间、规范理论及相关主题
- 批准号:
2204346 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Integral transforms and moduli theory
积分变换和模理论
- 批准号:
FT210100405 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
ARC Future Fellowships
Invariant Theory, Moduli Space, and Automorphic Representations
不变理论、模空间和自同构表示
- 批准号:
2201314 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CAREER:Combinatorial Intersection Theory on Moduli Spaces of Curves
职业:曲线模空间的组合交集理论
- 批准号:
2137060 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Tropical Methods for the Tautological Intersection Theory of the Moduli Spaces of Curves
曲线模空间同义反复交集理论的热带方法
- 批准号:
2100962 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant