Conference on Advances in Geometric Representation Theory

几何表示理论进展会议

基本信息

项目摘要

The conference "Advances in geometric representation theory" will be held May 8-13, 2016 at the University of Michigan. Geometric representation theory is the study of symmetry via geometric spaces. It is an expanding branch of mathematics with wide-reaching applications and connections to other fields. The timing of the conference has been chosen in anticipation of the first results emerging from the 2014 program in geometric representation theory at the Mathematical Sciences Research Institute in Berkeley, as well as intensive semester programs in Canada and Sweden. The conference will provide a venue to disseminate major new results in this rapidly developing field of mathematics and make the corresponding new methods and points of view available to a broad range of researchers. In particular, the organizers will make specific efforts to include graduate students and post-docs, as well as members of underrepresented groups.Classically, problems of classification of representations have been attacked with a wide variety of algebraic, analytic, and combinatorial methods. Since the more recent discovery of equivalences with geometric objects such as D-modules, the door has been opened to the application of powerful tools from geometry, such as Hodge theory and the decomposition theorem. The conference will focus on these recent developments. New categorical techniques and relationships to physics and algebraic geometry will draw the participation of researchers from those fields, which will contribute to further interdisciplinary interactions. The conference website is http://www-personal.umich.edu/~snkitche/Conference/.
“几何表示理论的进展”会议将于2016年5月8日至13日在密歇根大学举行。几何表示理论是通过几何空间研究对称性的理论。它是数学的一个不断扩展的分支,有着广泛的应用和与其他领域的联系。选择这次会议的时机是为了迎接伯克利数学科学研究所2014年几何表示理论项目的首批成果,以及加拿大和瑞典的密集学期项目。会议将提供一个场所,传播这一迅速发展的数学领域的重大新成果,并向广泛的研究人员提供相应的新方法和新观点。特别是,组织者将特别努力包括研究生和博士后,以及代表性不足的群体的成员。传统上,表示的分类问题已经用各种各样的代数、分析和组合方法来解决。自从最近发现了与几何对象(如D-模)的等价性以来,就向应用几何的强大工具敞开了大门,如Hodge理论和分解定理。会议将重点关注这些最近的事态发展。新的分类技术和与物理和代数几何的关系将吸引来自这些领域的研究人员的参与,这将有助于进一步的跨学科互动。会议网址为:http://www-personal.umich.edu/~snkitche/Conference/.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah Kitchen其他文献

Sphere-Graph: A Compact 3D Topological Map for Robotic Navigation and Segmentation of Complex Environments
Sphere-Graph:用于机器人导航和复杂环境分割的紧凑 3D 拓扑图
Optimizing Heterogeneous Platform Allocation Using Reinforcement Learning
使用强化学习优化异构平台分配
  • DOI:
    10.1109/aero55745.2023.10115631
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xavier Brumwell;Sarah Kitchen;P. Zulch
  • 通讯作者:
    P. Zulch

Sarah Kitchen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarah Kitchen', 18)}}的其他基金

P-adic Representation Theory and Geometry of the Lubin-Tate Tower
鲁宾-泰特塔的P进表示理论和几何
  • 批准号:
    1748706
  • 财政年份:
    2017
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
P-adic Representation Theory and Geometry of the Lubin-Tate Tower
鲁宾-泰特塔的P进表示理论和几何
  • 批准号:
    1302162
  • 财政年份:
    2013
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
  • 批准号:
    2348384
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
CAREER: Geometric Deep Learning to Facilitate Algorithmic and Scientific Advances in Therapeutics
职业:几何深度学习促进治疗学的算法和科学进步
  • 批准号:
    2339524
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Advances in Geometric Mechanics and Topology of Quantum Systems
量子系统几何力学和拓扑的进展
  • 批准号:
    21K03223
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The shape of chaos: geometric advances in partially hyperbolic dynamics
混沌的形状:部分双曲动力学的几何进展
  • 批准号:
    DP180101385
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Projects
Geometric Group Theory and Low-Dimensional Topology: Recent Connections and Advances
几何群论和低维拓扑:最新联系和进展
  • 批准号:
    1624301
  • 财政年份:
    2016
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Algorithmic and computational advances in geometric group theory
几何群论的算法和计算进展
  • 批准号:
    FT110100178
  • 财政年份:
    2012
  • 资助金额:
    $ 3.5万
  • 项目类别:
    ARC Future Fellowships
Workshop Recent Advances in Geometric Group Theory
研讨会几何群论的最新进展
  • 批准号:
    EP/I033645/1
  • 财政年份:
    2011
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Research Grant
Advances in time series model identification, density estimation and geometric probability with applications
时间序列模型识别、密度估计和几何概率及其应用的进展
  • 批准号:
    8666-1999
  • 财政年份:
    2002
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Advances in time series model identification, density estimation and geometric probability with applications
时间序列模型识别、密度估计和几何概率及其应用的进展
  • 批准号:
    8666-1999
  • 财政年份:
    2001
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了