Geometric Group Theory and Low-Dimensional Topology: Recent Connections and Advances

几何群论和低维拓扑:最新联系和进展

基本信息

  • 批准号:
    1624301
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-01 至 2017-04-30
  • 项目状态:
    已结题

项目摘要

This NSF award provides partial support for U.S. based mathematicians to participate in an advanced school and workshop on "Geometric Group Theory and Low-Dimensional Topology: Recent Connections and Advances," to be held at ICTP, Trieste, Italy, 23 May - 3 June 2016. The proposed activity is a mix of "hot topics" that would afford tremendous opportunities to mathematicians at all career stages to interact and generate new ideas. The advanced school will expose graduate students to a diverse array research topics. Introducing both US based and international students to leading experts from across the globe should have a profound effect on cultivating mathematics in the US and in the developing world. The potential for fostering initial contacts and interactions that lead to closer connections between US based mathematicians and those in the developing world is a long term benefit for faculty and students.The main topics to be covered at this advanced school and workshop include character varieties and deformation of geometric structures, effective geometry and topology of hyperbolic 3-manifolds, left orderability and Heegaard Floer theory, the mapping class group action on Teichmuller space and the curve complex, dynamics on these spaces and virtually special cube complexes and groups. There have been important developments in these areas recently, for example: the impact of geometric group theory in the work of Wise and subsequently Agol's resolution of the famous "virtual conjectures" in 3-manifold topology. The event website is: http://indico.ictp.it/event/7646/.
该NSF奖项为美国数学家提供部分支持,以参加将于2016年5月23日至6月3日在意大利的里雅斯特国际理论物理中心举行的关于“几何群论和低维拓扑:最近的联系和进展”的高级学校和研讨会。拟议的活动是一个混合的“热门话题”,将提供巨大的机会,数学家在所有职业阶段的互动和产生新的想法。 高级学院将使研究生接触到各种各样的研究课题。 将美国和国际学生介绍给来自地球仪的顶尖专家,应该会对美国和发展中国家的数学培养产生深远的影响。促进美国数学家和发展中国家数学家之间的初步接触和互动的潜力是教师和学生的长期利益。这个高级学校和研讨会的主要议题包括几何结构的特征多样性和变形,双曲三维流形的有效几何和拓扑,左序性和Heegaard Floer理论,Teichmuller空间和曲线复形上的映射类群作用,这些空间上的动力学以及实际上特殊的立方体复形和群。有重要的发展,在这些领域最近,例如:影响几何群论的工作明智的,随后阿戈尔的决议著名的“虚拟aidentures”在3流形拓扑。活动网址:http://indico.ictp.it/event/7646/。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Reid其他文献

High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome
疑似急性冠状动脉综合征患者就诊时的高敏心肌肌钙蛋白 I
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anoop S. V. Shah;A. Anand;Y. Sandoval;K. K. Lee;Stephen W. Smith;P. Adamson;A. Chapman;Timothy Langdon;D. Sandeman;Amar Vaswani;F. Strachan;A. Ferry;A. Stirzaker;Alan Reid;A. Gray;P. Collinson;D. McAllister;F. Apple;D. Newby;N. Mills
  • 通讯作者:
    N. Mills
High-Sensitivity Cardiac Troponin on Presentation to Rule Out Myocardial Infarction
高敏心肌肌钙蛋白检查可排除心肌梗塞
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills
  • 通讯作者:
    N. Mills
Relational Symmetries of Disaster Resilience Explored Through the Sendai Framework’s Guiding Principles
通过仙台框架的指导原则探讨灾害恢复力的关系对称性
High-sensitivity cardiac troponin on presentation to rule out myocardial infarction: a stepped-wedge cluster randomised controlled trial
高敏心肌肌钙蛋白可排除心肌梗死:阶梯楔形集群随机对照试验
  • DOI:
    10.1101/2020.09.06.20189308
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills
  • 通讯作者:
    N. Mills
Renewing the public and the role of research in education

Alan Reid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Reid', 18)}}的其他基金

Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Representations and Rigidity
表述和刚性
  • 批准号:
    1812397
  • 财政年份:
    2018
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
  • 批准号:
    1755177
  • 财政年份:
    2017
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Workshop on mapping class groups of surfaces and outer automorphism groups of free groups
曲面类群映射和自由群外自同构群研讨会
  • 批准号:
    1542752
  • 财政年份:
    2015
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
  • 批准号:
    1463740
  • 财政年份:
    2015
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Moduli spaces, Extremality and Global Invariants
模空间、极值和全局不变量
  • 批准号:
    1305448
  • 财政年份:
    2013
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Covering spaces of 3-manifolds and representations of their fundamental groups
3-流形的覆盖空间及其基本群的表示
  • 批准号:
    1105002
  • 财政年份:
    2011
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Interactions between the geometry of Banach spaces and other areas
Banach 空间的几何形状与其他区域之间的相互作用
  • 批准号:
    0968813
  • 财政年份:
    2010
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Finite covers of hyperbolic 3-manifolds
双曲3流形的有限覆盖
  • 批准号:
    0805828
  • 财政年份:
    2008
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
EMSW21-RTG-Program in low-dimensional topology and its applications
低维拓扑中的EMSW21-RTG-程序及其应用
  • 批准号:
    0636643
  • 财政年份:
    2007
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant

相似国自然基金

分泌蛋白IGFBP2在儿童Group3/Group4型髓母细胞瘤恶性进展中的作用与机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大兴安岭火山湖Group I长链烯酮冷季节温标研究与过去2000年温度定量重建
  • 批准号:
    42073070
  • 批准年份:
    2020
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
近海沉积物中Marine Group I古菌新类群的发现、培养及其驱动碳氮循环的机制
  • 批准号:
    92051115
  • 批准年份:
    2020
  • 资助金额:
    81.0 万元
  • 项目类别:
    重大研究计划
MicroRNA靶向的漆酶基因及其所在Group 1 亚家族成员 调控水稻产量性状的功能机制
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    257 万元
  • 项目类别:
超级增强子驱动的核心转录调控环路在Group_3亚型髓母细胞瘤的发病和治疗中的作用和机制
  • 批准号:
    81972646
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
东北地区火山湖GroupⅠ类型的长链烯酮研究及其不饱和度温标的应用
  • 批准号:
    41702187
  • 批准年份:
    2017
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
中国源毕氏肠微孢子虫group 2基因型人兽共患特征的研究
  • 批准号:
    31502055
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
人源Group IIE分泌型磷脂酶A2蛋白的结构生物学研究
  • 批准号:
    31300670
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
连锁群选育法(Linkage Group Selection)在柔嫩艾美耳球虫表型相关基因研究中应用
  • 批准号:
    30700601
  • 批准年份:
    2007
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
原核生物基因内含子-group II intron 的研究
  • 批准号:
    30770463
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
  • 批准号:
    2403833
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Conference: Young Geometric Group Theory XII
会议:年轻几何群理论XII
  • 批准号:
    2404322
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Conference: Riverside Workshop on Geometric Group Theory 2024
会议:2024 年河滨几何群论研讨会
  • 批准号:
    2342119
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Conference: Thematic Program in Geometric Group Theory
会议:几何群论专题课程
  • 批准号:
    2240567
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Conference: Riverside Geometric Group Theory Workshop 2023
会议:Riverside几何群理论研讨会2023
  • 批准号:
    2234299
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2023
会议:几何和渐近群理论及其应用 2023
  • 批准号:
    2311110
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Conference: Geometric Group Theory XI
会议:几何群论XI
  • 批准号:
    2242426
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Classification of von Neumann Algebras: Connections and Applications to C*-algebras, Geometric Group Theory and Continuous Model Theory
冯诺依曼代数的分类:与 C* 代数、几何群论和连续模型理论的联系和应用
  • 批准号:
    2154637
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Geometric group theory
几何群论
  • 批准号:
    2746871
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Studentship
Studying generalised Thompson's group with tools from geometric group theory and operator algebra
使用几何群论和算子代数的工具研究广义汤普森群
  • 批准号:
    EP/W007371/1
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了