The Positive Grassmannian: Applications and Generalizations
积极的格拉斯曼主义:应用和概括
基本信息
- 批准号:1600447
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project explores structures that lie at the intersection of combinatorics, representation theory, statistical physics, and integrable systems, with potential significant impact on several fields, including applications to shallow water waves, translation in protein synthesis, and scattering amplitudes in supersymmetric Yang-Mills theory. The central structures in the mathematics of the project are Grassmannians, which parameterize subspaces of vector spaces and are ubiquitous in mathematics, appearing variously as projective spaces in projective geometry, compact smooth manifolds in differential geometry, and as a scheme in algebraic geometry. Grassmannians play an important role for spatial recognition in computer vision, in coding and communication theory, in studying shallow water waves in physics, and in the computation of scattering amplitudes of subatomic particles. This project explores features of remarkably rich subsets of real Grassmannians called totally positive and totally non-negative Grassmannians. These structures constitute refinements and extensions of the classical theory of positive definite and positive semi-definite matrices and representation theoretic work in the context of Lie Theory, and their structure will be studied from topological, representation theoretic, and combinatorial points of view. This project also seeks to increase the visibility of women mathematicians via a series of lectures at the University of California, Berkeley given by distinguished women. More concretely, this project concerns several interrelated questions surrounding the positive Grassmannian, Macdonald-Koornwinder polynomials, and the asymmetric exclusion process. In particular, the research will investigate: a new polytopal manifestation of mirror symmetry for flag varieties; the topology of the positive Grassmannian; the structure of soliton solutions to the Kadomtsev?Petviashvili equation coming from the Grassmannian; the combinatorics of the amplituhedron, a new generalization of the positive Grassmannian; and combinatorial formulas for Macdonald-Koornwinder polynomials and asymmetric simple exclusion process probabilities using rhombic tableaux.
这个项目探索位于组合学、表示论、统计物理学和可积系统的交叉点上的结构,对几个领域具有潜在的重大影响,包括应用于浅水波,蛋白质合成中的平移,以及超对称杨-米尔斯理论中的散射幅度。该项目数学中的中心结构是Grassmannians,它将向量空间的子空间参数化,在数学中普遍存在,在射影几何中以射影空间的形式出现,在微分几何中以紧致光滑流形的形式出现,在代数几何中以一种方案的形式出现。Grassmannians在计算机视觉的空间识别、编码和通信理论、物理学中的浅水波研究以及亚原子粒子散射幅度的计算中都发挥着重要的作用。这个项目探索了真正的格拉斯曼尼亚人中非常丰富的子集的特征,这些子集被称为完全积极和完全非负的格拉斯曼尼亚人。这些结构是对经典的正定和半正定矩阵理论以及在李论背景下的表示理论工作的改进和推广,将从拓扑学、表示论和组合的角度研究它们的结构。该项目还试图通过杰出女性在加州大学伯克利分校的一系列讲座来提高女性数学家的知名度。更具体地说,这个项目涉及围绕正Grassman多项式、Macdonald-Koornwinder多项式和非对称排斥过程的几个相互关联的问题。具体地说,这项研究将研究:旗簇镜像对称性的一个新的多面体表示;正Grassman的拓扑结构;来自Grassman的Kadomtsev?Petviashvili方程的孤子解的结构;正Grassman的新推广--幅面体的组合学;以及Macdonald-Koornder多项式的组合公式和非对称简单排除过程概率的菱形表格。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sylvie Corteel其他文献
The $$\varvec{A}_2$$ Rogers–Ramanujan Identities Revisited
- DOI:
10.1007/s00026-019-00446-7 - 发表时间:
2019-10-31 - 期刊:
- 影响因子:0.700
- 作者:
Sylvie Corteel;Trevor Welsh - 通讯作者:
Trevor Welsh
Rhombic staircase tableaux and Koornwinder polynomials
- DOI:
10.1007/s00209-024-03596-4 - 发表时间:
2024-10-08 - 期刊:
- 影响因子:1.000
- 作者:
Sylvie Corteel;Olya Mandelshtam;Lauren Williams - 通讯作者:
Lauren Williams
The Joint Distribution of Descent and Major Index over Restricted Sets of Permutations
- DOI:
10.1007/s00026-007-0325-y - 发表时间:
2008-04-26 - 期刊:
- 影响因子:0.700
- 作者:
Sylvie Corteel;Ira M. Gessel;Carla D. Savage;Herbert S. Wilf - 通讯作者:
Herbert S. Wilf
Partitions and Compositions Defined by Inequalities
- DOI:
10.1007/s11139-004-0144-2 - 发表时间:
2004-09-01 - 期刊:
- 影响因子:0.700
- 作者:
Sylvie Corteel;Carla D. Savage - 通讯作者:
Carla D. Savage
Sylvie Corteel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sylvie Corteel', 18)}}的其他基金
Combinatorics of Multivariate Orthogonal Polynomials
多元正交多项式的组合
- 批准号:
2054482 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
复Grassmannian流形中全纯常曲率二维球面及Willmore子流形的构造
- 批准号:12301065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Grassmannian研究中的算子谱理论方法
- 批准号:11571211
- 批准年份:2015
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Cluster structures for positroid cells in the Grassmannian
格拉斯曼阶正样细胞的簇结构
- 批准号:
2744564 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Studentship
Conformal Blocks and Affine Grassmannian Associated to Parahoric Group Schemes
共形块和仿射格拉斯曼与超视群方案相关
- 批准号:
2001365 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Cluster polylogarithms, Grassmannian polylogarithms and Zagier's conjecture on zeta_F(n), n >= 5
zeta_F(n) 上的簇多对数、格拉斯曼多对数和 Zagier 猜想,n >= 5
- 批准号:
442093436 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Research Grants
The Littelmann path model via the affine Grassmannian
通过仿射格拉斯曼的 Littelmann 路径模型
- 批准号:
372169579 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Research Grants
Penrose transform for indefinite Grassmannian manifolds
不定格拉斯曼流形的彭罗斯变换
- 批准号:
16K05122 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of hypergeometric functions on the Grassmannian, q-hypergeometric functions and nonlinear special functions
格拉斯曼超几何函数、q-超几何函数和非线性特殊函数的研究
- 批准号:
15K04903 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Amplituhedron and Positive Grassmannian
幅面体和正格拉斯曼函数
- 批准号:
482361-2015 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards
Metric structure of kernel Grassmannian representation and its application to brain signal processing
核格拉斯曼表示的度量结构及其在脑信号处理中的应用
- 批准号:
15K00302 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An approach to soliton theory by the method of the Sato Grassmannian and multi-variate sigma functions
通过佐藤格拉斯曼函数和多元西格玛函数方法研究孤子理论
- 批准号:
15K04907 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Twistor transform for indefinite Grassmannian manifolds and the theory of infinite-dimensional representations
不定格拉斯曼流形的扭转变换和无限维表示理论
- 批准号:
23540073 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)