Combinatorics of Multivariate Orthogonal Polynomials
多元正交多项式的组合
基本信息
- 批准号:2054482
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of families of orthogonal polynomials aims to generalize understanding of the classical families of polynomials, such as the Legendre polynomials, that arise in the study of differential equations and have wide application in physics, engineering, numerical approximation, and other fields. This research project addresses several questions on the combinatorics of multivariate orthogonal polynomials. The goal is to develop general and efficient techniques in enumerative combinatorics with application to questions coming from combinatorics, algebra, and physics. The topics under study include the combinatorial interpretation of the coefficients of Askey-Wilson polynomials and their multivariate generalization, the interplay between exclusion processes and MacDonald (Koornwinder) polynomials, the combinatorics of q-Jacobi polynomials and Lecture Hall tableaux, and the relations between Rogers-Ramanujan identities and cylindric partitions. The project will involve graduate students in research.More specifically, this project concerns several interrelated questions surrounding the combinatorics of Askey-Wilson polynomials and their multivariate generalization. The first research direction concerns the positivity of the coefficients and the expansion of these polynomials in the Schur basis. The project will explore the interplay of lattice paths combinatorics, tableaux combinatorics, algebra, and probability to address these questions. The second direction aims to employ multispecies asymmetric simple exclusion process (ASEP) and generalized versions to understand the combinatorics of Macdonald polynomials of different types and generalization to quasisymmetric analogues. The PI aims to use techniques coming from statistical physics, combinatorial algebras, and multiline queue/vertex model combinatorics to develop this combinatorial theory. A third direction is to study the Lecture Hall Schur functions and their skew analogues, their connections with q-Jacobi multivariate analogues and generalizations, and tiling models coming from Lecture Hall objects and their asymptotic properties. A final direction concerns the Rogers-Ramanujan identities and their connection to cylindric partitions and Hall Littlewood polynomials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
正交多项式族的研究旨在推广对经典多项式族的理解,例如在微分方程研究中出现的勒让德多项式,并在物理,工程,数值逼近和其他领域中有广泛的应用。本研究计画针对多元正交多项式组合数学的几个问题。目标是发展一般和有效的技术,在枚举组合与应用的问题,来自组合,代数和物理。正在研究的主题包括组合解释的系数的阿斯基威尔逊多项式和他们的多元推广,排斥过程和麦克唐纳(Koornwinder)多项式之间的相互作用,组合的q-雅可比多项式和演讲厅tableaux,和罗杰斯-拉马努金身份和圆柱分区之间的关系。该项目将涉及研究生的研究。更具体地说,该项目涉及围绕Askey-Wilson多项式及其多元推广的组合学的几个相关问题。第一个研究方向涉及系数的正性和这些多项式在Schur基中的展开。该项目将探讨格路径组合,tableaux组合,代数和概率的相互作用,以解决这些问题。第二个方向的目的是采用多物种不对称简单排斥过程(ASEP)和广义版本来理解不同类型的Macdonald多项式的组合学和准对称类似物的推广。PI的目标是使用来自统计物理,组合代数和多线队列/顶点模型组合数学的技术来发展这种组合理论。第三个方向是研究演讲厅舒尔函数及其斜向类似物,它们与q-Jacobi多元类似物和推广的联系,以及来自演讲厅对象的平铺模型及其渐近性质。最后一个方向涉及罗杰斯-拉马努金恒等式及其与圆柱分区和霍尔-利特尔伍德多项式的联系。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
From multiline queues to Macdonald polynomials via the exclusion process
通过排除过程从多行队列到麦克唐纳多项式
- DOI:10.1353/ajm.2022.0007
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Corteel, Sylvie;Mandelshtam, Olya;Williams, Lauren
- 通讯作者:Williams, Lauren
Expanding the quasisymmetric Macdonald polynomials in the fundamental basis
在基本基上展开拟对称麦克唐纳多项式
- DOI:10.5802/alco.289
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Corteel, Sylvie;Mandelshtam, Olya;Roberts, Austin
- 通讯作者:Roberts, Austin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sylvie Corteel其他文献
The $$\varvec{A}_2$$ Rogers–Ramanujan Identities Revisited
- DOI:
10.1007/s00026-019-00446-7 - 发表时间:
2019-10-31 - 期刊:
- 影响因子:0.700
- 作者:
Sylvie Corteel;Trevor Welsh - 通讯作者:
Trevor Welsh
Rhombic staircase tableaux and Koornwinder polynomials
- DOI:
10.1007/s00209-024-03596-4 - 发表时间:
2024-10-08 - 期刊:
- 影响因子:1.000
- 作者:
Sylvie Corteel;Olya Mandelshtam;Lauren Williams - 通讯作者:
Lauren Williams
The Joint Distribution of Descent and Major Index over Restricted Sets of Permutations
- DOI:
10.1007/s00026-007-0325-y - 发表时间:
2008-04-26 - 期刊:
- 影响因子:0.700
- 作者:
Sylvie Corteel;Ira M. Gessel;Carla D. Savage;Herbert S. Wilf - 通讯作者:
Herbert S. Wilf
Partitions and Compositions Defined by Inequalities
- DOI:
10.1007/s11139-004-0144-2 - 发表时间:
2004-09-01 - 期刊:
- 影响因子:0.700
- 作者:
Sylvie Corteel;Carla D. Savage - 通讯作者:
Carla D. Savage
Sylvie Corteel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sylvie Corteel', 18)}}的其他基金
The Positive Grassmannian: Applications and Generalizations
积极的格拉斯曼主义:应用和概括
- 批准号:
1600447 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
- 批准号:
24K07389 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
- 批准号:
23K03219 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Ethnic-racial discrimination influences on neural representation of threat learning in Latina girls: A multivariate modeling approach
职业:民族种族歧视对拉丁裔女孩威胁学习的神经表征的影响:多元建模方法
- 批准号:
2239067 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
- 批准号:
23K14813 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CDS&E: Immersive Virtual Reality for Discovering Hidden Chemical Information and Improving Multivariate Modeling and Predication
CDS
- 批准号:
2305020 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Applications of Algebraic Geometry to Multivariate Gaussian Models
代数几何在多元高斯模型中的应用
- 批准号:
2306672 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Multivariate analysis methods for optical imaging measurements of macroscopic inhomogeneous structures
宏观非均匀结构光学成像测量的多元分析方法
- 批准号:
23K03283 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Simplification of solution matrices in multivariate data analysis by integrating of sparseness and simple structure
通过稀疏性和简单结构的结合简化多元数据分析中的解矩阵
- 批准号:
23K16854 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of non-invasive measurement and induction of multivariate sharp-wave ripples in the human brain
开发人脑多元尖波波纹的非侵入性测量和感应
- 批准号:
23K14679 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploring and exploiting new representations for multivariate extremes
探索和利用多元极值的新表示
- 批准号:
EP/X010449/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant