Beyond Geometric Invariant Theory
超越几何不变理论
基本信息
- 批准号:1601976
- 负责人:
- 金额:$ 13.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In many branches of mathematics one encounters sets of equations with symmetries -- transformations that take any solution of the equations to another solution. In this situation, it is often very useful to classify all solutions up to the action of these symmetries, two solutions considered equivalent if they are related by a symmetry transformation. Within the field of algebraic geometry, the theory known as geometric invariant theory provides a very good answer to this classification question. There is reason to suspect that the methods of geometric invariant theory extend to a much broader context. In particle physics, the universe is described as a set of solutions of some equations up to the action of a very large set of symmetries. This project aims to broaden the methods and results of geometric invariant theory and bring them to bear on a large set of classification problems in algebraic geometry, including some of those studied in high energy physics.This project envisions a new general approach to moduli problems in algebraic geometry. The main technical tool is a special kind of stratification on an algebraic stack called a theta stratification. Theta stratifications are a common generalization of the Kempf-Ness stratification studied in geometric invariant theory and the Harder-Narasimhan stratification of the moduli space of vector bundles on a curve. Classically these stratifications were used, in the case of smooth stacks, to study the Betti numbers of the moduli stack of semistable objects. The project will pursue several generalizations of these results to situations where the stack is not necessarily smooth, and to extracting more subtle topological information about the stack. Examples include wall-crossing formulas for integrals of tautological K-theory classes, and more generally extracting information about the derived category of coherent sheaves on the stack and the semistable locus.
在数学的许多分支中,人们会遇到具有对称性的方程组——将方程的任何解转化为另一个解的变换。在这种情况下,根据这些对称的作用对所有解进行分类通常是非常有用的,如果两个解通过对称变换相关联,则认为它们是等价的。在代数几何领域中,被称为几何不变量理论的理论为这个分类问题提供了一个很好的答案。有理由怀疑几何不变量理论的方法可以扩展到更广泛的范围。在粒子物理学中,宇宙被描述为一些方程的一组解,这些方程是由一组非常大的对称性所决定的。本项目旨在扩展几何不变量理论的方法和结果,并将其应用于代数几何中的大量分类问题,包括高能物理中的一些分类问题。这个项目设想了一种新的通用方法来解决代数几何中的模问题。主要的技术工具是一种特殊的代数堆栈上的分层,称为θ分层。Theta分层是几何不变理论中研究的Kempf-Ness分层和曲线上向量束模空间的Harder-Narasimhan分层的一般推广。在光滑叠的情况下,经典地使用这些分层来研究半稳定对象的模叠的贝蒂数。该项目将对这些结果进行几种概括,以解决堆栈不一定平滑的情况,并提取有关堆栈的更微妙的拓扑信息。例子包括重言k理论类积分的壁交公式,以及更一般地提取关于堆栈上相干束和半稳定轨迹的派生类别的信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Halpern-Leistner其他文献
The equivariant Verlinde formula on the moduli of Higgs bundles
- DOI:
- 发表时间:
2016-08 - 期刊:
- 影响因子:0
- 作者:
Daniel Halpern-Leistner - 通讯作者:
Daniel Halpern-Leistner
The noncommutative minimal model program
- DOI:
- 发表时间:
2023-01 - 期刊:
- 影响因子:0
- 作者:
Daniel Halpern-Leistner - 通讯作者:
Daniel Halpern-Leistner
Daniel Halpern-Leistner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Halpern-Leistner', 18)}}的其他基金
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
- 批准号:
2052936 - 财政年份:2021
- 资助金额:
$ 13.85万 - 项目类别:
Continuing Grant
CAREER: Moduli Spaces and Derived Categories
职业:模空间和派生范畴
- 批准号:
1945478 - 财政年份:2020
- 资助金额:
$ 13.85万 - 项目类别:
Continuing Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
- 批准号:
22K13904 - 财政年份:2023
- 资助金额:
$ 13.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric foundation of invariant and conservative parameterization schemes
不变保守参数化方案的几何基础
- 批准号:
RGPIN-2016-06457 - 财政年份:2022
- 资助金额:
$ 13.85万 - 项目类别:
Discovery Grants Program - Individual
Geometric foundation of invariant and conservative parameterization schemes
不变保守参数化方案的几何基础
- 批准号:
RGPIN-2016-06457 - 财政年份:2021
- 资助金额:
$ 13.85万 - 项目类别:
Discovery Grants Program - Individual
Complete reducibility, geometric invariant theory, spherical buildings: a new approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的新方法
- 批准号:
19K14516 - 财政年份:2019
- 资助金额:
$ 13.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric foundation of invariant and conservative parameterization schemes
不变保守参数化方案的几何基础
- 批准号:
RGPIN-2016-06457 - 财政年份:2019
- 资助金额:
$ 13.85万 - 项目类别:
Discovery Grants Program - Individual
Geometric foundation of invariant and conservative parameterization schemes
不变保守参数化方案的几何基础
- 批准号:
RGPIN-2016-06457 - 财政年份:2018
- 资助金额:
$ 13.85万 - 项目类别:
Discovery Grants Program - Individual
Geometric foundation of invariant and conservative parameterization schemes
不变保守参数化方案的几何基础
- 批准号:
RGPIN-2016-06457 - 财政年份:2017
- 资助金额:
$ 13.85万 - 项目类别:
Discovery Grants Program - Individual
Geometric foundation of invariant and conservative parameterization schemes
不变保守参数化方案的几何基础
- 批准号:
RGPIN-2016-06457 - 财政年份:2016
- 资助金额:
$ 13.85万 - 项目类别:
Discovery Grants Program - Individual
Studies on left-invariant geometric structures by submanifold theory
子流形理论研究左不变几何结构
- 批准号:
26287012 - 财政年份:2014
- 资助金额:
$ 13.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




