Collaborative Research: Enhanced Adsorption Cooling with Monolithic Nanoporous Adsorbents

合作研究:使用整体式纳米多孔吸附剂增强吸附冷却

基本信息

  • 批准号:
    1602984
  • 负责人:
  • 金额:
    $ 15.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

High Performance Adsorption Cooling Systems Using Monolithic Nanoporous AdsorbentsAdsorption cooling is an alternative technology to vapor compression air conditioning. It is powered by low-grade heat, solar energy, or waste heat from industrial processes or automotive engines. It uses environmentally friendly refrigerants like water as the working fluid. The sorption bed is the core of an adsorption cooling system in which the working fluid is adsorbed/desorbed to compensate for the work needed in a conventional vapor compression cycle. To produce cooling, adsorption cycle undergoes two main processes: heating-desorption-condensation and cooling-adsorption-evaporation. The refrigerant is desorbed by heating the adsorbent material and condensing in the condenser while it vaporizes in the evaporator and is adsorbed by cooling the adsorbent material. Fast thermal response of the bed is the key factor that leads to high performance. Packed beds, which suffer from low thermal conductivity due to the poor particle-to-particle contact and poor particle-to-cooling surface contact, are regularly used in such systems. In this research, an innovative bed will be constructed by growing a monolithic nanoporous adsorbent layer with considerable thickness on copper fins of heat exchangers. The monolith has internal vapor channels to reduce vapor diffusion resistance and its thermal conductivity is expected to be many folds higher than those in packed beds. The proposed monoliths can be used in highly efficient and compact adsorption cooling units. In parallel to the research, senior students will be trained in designing environmental friendly cooling systems. A radically different and potentially transformative adsorption cooling system will be developed. The system is based on monolithic nanoporous silica or copper. Our research plan will include: preparing monoliths, building an experimental set-up, modeling the heat and mass transfer processes, designing and building new bed using nanoporous monoliths, and measuring surface stresses. First, monoliths will be prepared via complete removal of residue solvent of nanostructured silica gel. The surface of the silica gel will be covered with a layer of liquid paraffin so that the process will be carried out at high temperature and in a mild way to prevent the monolith from cracking. Vertical pillars will be placed to form the vapor paths. After forming the monoliths, the pillars can be removed. Second, an experimental measurement set-up will be built to monitor the change of the adsorbent mass as a function of time at a desired pressure and temperature. The measured data will be used to determine mass diffusion coefficient, activation energy, and heat of adsorption. In the modeling part, the heat and mass transfer processes will be solved in the micropores generated in the nano-monoliths. The model will rely on solving the flow in the pores as well as the adsorption and diffusion processes of vapor in the solid phase. At the interface between the two phases mass and energy balances will be applied. Next, to monitor the performance of the developed monoliths in adsorption cooling system, a new adsorbing bed will be constructed by growing a thick monolith layer on a heat exchanger, which increases adsorption uptake. Different design configurations will be tested to come up with the best design. Specific cooling power (SCP) and coefficient of performance (COP) will be calculated to evaluate the new bed performance. During the operation of the cooling system, the monolithic nanoporous material may experience large surface tension from liquid that may damage the nano structures. So the mechanical stability of the developed material will be tested by measuring the surface stresses of a layer of the material coated on a micro cantilever of Atomic Force Microscope (AFM).
采用整体式纳米孔吸附剂的高性能吸附制冷系统吸附制冷是蒸汽压缩空调的替代技术。它由低档热能、太阳能或工业过程或汽车发动机产生的废热提供动力。它使用像水这样的环保制冷剂作为工质。吸附床是吸附冷却系统的核心,在该系统中,工质被吸附/解吸,以补偿传统的蒸汽压缩循环所需的功。为了产生冷却,吸附循环主要经历两个过程:加热-解吸-冷凝和冷却-吸附-蒸发。制冷剂在蒸发器中蒸发时,通过加热吸附材料并在冷凝器中冷凝来解吸,并通过冷却吸附材料来吸附。床的快速热响应是实现高性能的关键因素。填充床由于颗粒间的接触不良和颗粒与冷却面间的接触不良而导致导热系数低,常用于此类系统。在本研究中,将通过在换热器的铜翅片上生长具有一定厚度的整体式纳米多孔吸附层来构建一种创新的床。该整体柱具有内部蒸汽通道,以减少蒸汽扩散阻力,其导热系数预计将比填充床中的高出许多倍。所提出的整体可用于高效紧凑型吸附制冷机组。在研究的同时,高年级学生将接受设计环境友好型冷却系统的培训。将开发一种截然不同且具有潜在变革性的吸附制冷系统。该系统是基于整体式纳米多孔二氧化硅或铜。我们的研究计划将包括:制备整体,建立实验装置,模拟传热和传质过程,设计和建造使用纳米孔整体的新型床,以及测量表面应力。首先,通过完全去除纳米结构硅胶的残留溶剂来制备整体。硅胶的表面将覆盖一层液体石蜡,这样这一过程将在高温下以温和的方式进行,以防止整体开裂。将放置垂直柱子以形成蒸汽路径。在形成单体后,可以移除柱子。其次,将建立一个实验测量装置,以监测在期望的压力和温度下,吸附剂质量随时间的变化。测量的数据将用于确定质量扩散系数、活化能和吸附热。在建模部分,将求解纳米整体中产生的微孔内的传热传质过程。该模型将依赖于求解气孔内的流动以及水蒸气在固相中的吸附和扩散过程。在两相之间的交界处,将应用质量和能量平衡。下一步,为了监测所开发的整体吸附制冷系统的性能,将通过在换热器上生长一层厚的整体吸附床层来构建新的吸附床,从而增加吸附吸收。将对不同的设计配置进行测试,以得出最佳设计。通过计算比制冷功率(SCP)和性能系数(COP)来评价新型床层的性能。在冷却系统运行过程中,整体式纳米多孔材料可能会受到来自液体的巨大表面张力的影响,这可能会破坏纳米结构。因此,将通过测量覆盖在原子力显微镜(AFM)微悬臂梁上的一层材料的表面应力来测试所开发材料的机械稳定性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ming Su其他文献

Late Miocene provenance evolution at the head of Central Canyon in the Qiongdongnan Basin, Northern South China Sea
南海北部琼东南盆地中央峡谷首部晚中新世物源演化
  • DOI:
    10.1016/j.marpetgeo.2019.07.053
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Ming Su;Chihua Wu;Hui Chen;Dengfeng Li;Tao Jiang;Xinong Xie;Haijing Jiao;Zhenfeng Wang;Xiaoming Sun
  • 通讯作者:
    Xiaoming Sun
Changing nitrogen cycles in ecosystems across the globe : Training the next generation of ILTER scientists
改变全球生态系统中的氮循环:培训下一代 ILTER 科学家
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Shibata;P. Groffman;W. McDowell;P. Pinho;Karibu Fukuzawa;Makoto Kobayashi;Y. Uchida;K. Koba;Toshiya Yoshida;Y. Ohishi;YiChing Lin;Chiling Chen;I;Chiao‐Ping Wang;Wei‐Chun Chao;Chung;Jin Tang;P. Templer;I. Djukic;K. Isobe;H. Doi;A. Kohzu;Y. Fujita;T. Hiura;N. Ohte;A. Flores‐Díaz;Andreea Csolti;Ei Thandar Bol;Ian Hsiao;I. Mukumbuta;I. Bourgeois;Jinsen Zheng;Joseph C. Morina;Jun Lu;L. Rose;N. Hosokawa;R. Sharif;R. Hewitt;S. R. Lins;Takahiro Inoue;U. Baatar;Wei Zhou;Weisong Shi;Y. N. Palma;Ming Su
  • 通讯作者:
    Ming Su
A Multiple Watermarking Scheme with Embedding-Order Identifying Feature
具有嵌入顺序识别功能的多重水印方案
Effect of adding Pr on the microstructure and hot tearing sensitivity of as-cast Al-Cu-Mg alloys
添加Pr对铸态Al-Cu-Mg合金显微组织和热撕裂敏感性的影响
  • DOI:
    10.1016/j.matchar.2022.112141
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Chunyu Yue;Xiaoguang Yuan;Ming Su;Yuxiang Wang
  • 通讯作者:
    Yuxiang Wang
Chalcone derivatives from licorice inhibit human and rat gonadal 3β-hydroxysteroid dehydrogenases as therapeutic uses
甘草中的查尔酮衍生物作为治疗用途抑制人和大鼠性腺 3β-羟类固醇脱氢酶
  • DOI:
    10.1016/j.jep.2023.116690
  • 发表时间:
    2023-12-05
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Lei Ye;Ming Su;Xinyi Qiao;Shaowei Wang;Ke Zheng;Yang Zhu;Huitao Li;Yiyan Wang;Ren-shan Ge
  • 通讯作者:
    Ren-shan Ge

Ming Su的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ming Su', 18)}}的其他基金

CAREER: Biosensing in thermal space
职业:热空间生物传感
  • 批准号:
    1501356
  • 财政年份:
    2014
  • 资助金额:
    $ 15.88万
  • 项目类别:
    Continuing Grant
CAREER: Biosensing in thermal space
职业:热空间生物传感
  • 批准号:
    1360603
  • 财政年份:
    2013
  • 资助金额:
    $ 15.88万
  • 项目类别:
    Continuing Grant
CAREER: Biosensing in thermal space
职业:热空间生物传感
  • 批准号:
    1055599
  • 财政年份:
    2011
  • 资助金额:
    $ 15.88万
  • 项目类别:
    Continuing Grant
Encapsulated phase change nanoparticles for heat transfer
用于传热的封装相变纳米颗粒
  • 批准号:
    0828466
  • 财政年份:
    2008
  • 资助金额:
    $ 15.88万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 15.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323983
  • 财政年份:
    2024
  • 资助金额:
    $ 15.88万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 15.88万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
  • 批准号:
    2416375
  • 财政年份:
    2023
  • 资助金额:
    $ 15.88万
  • 项目类别:
    Continuing Grant
Collaborative Research: URoL:ASC: Microbiome-mediated plant genetic resistance for enhanced agricultural sustainability
合作研究:URoL:ASC:微生物介导的植物遗传抗性以增强农业可持续性
  • 批准号:
    2319568
  • 财政年份:
    2023
  • 资助金额:
    $ 15.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: CCRI: ENS: Enhanced Open Networked Airborne Computing Platform
合作研究:研究基础设施:CCRI:ENS:增强型开放网络机载计算平台
  • 批准号:
    2235160
  • 财政年份:
    2023
  • 资助金额:
    $ 15.88万
  • 项目类别:
    Standard Grant
Collaborative Research: A Solar-Powered Aerial Transformer for Enhanced Mobility and Endurance
合作研究:增强机动性和耐用性的太阳能空中变压器
  • 批准号:
    2334994
  • 财政年份:
    2023
  • 资助金额:
    $ 15.88万
  • 项目类别:
    Standard Grant
Collaborative Research: A Solar-Powered Aerial Transformer for Enhanced Mobility and Endurance
合作研究:增强机动性和耐用性的太阳能空中变压器
  • 批准号:
    2334995
  • 财政年份:
    2023
  • 资助金额:
    $ 15.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
  • 批准号:
    2310137
  • 财政年份:
    2023
  • 资助金额:
    $ 15.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
  • 批准号:
    2246916
  • 财政年份:
    2023
  • 资助金额:
    $ 15.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了