Flexible flapping surfaces for water collection and condensation

用于水收集和冷凝的灵活拍打表面

基本信息

  • 批准号:
    1603737
  • 负责人:
  • 金额:
    $ 31.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

1603737DerbyElectrical power production is an extremely water intensive process, requiring over ten gallons of water to produce each kWh of electricity in the U.S. Power plant cooling towers represent a promising area for water harvesting, as blowdown and evaporated water could be recovered and used for energy production, industry, or agriculture. Thin, flapping polymer films/meshes are a potentially transformative process which would reduce thermal resistances from air, conduction through the polymer, and condensation, thereby increasing total water removal rates.From preliminary findings, droplets oscillated on a perfluoroalkoxy film, flapping at 14 Hz were ejected from the flapping surface. Average droplet departure diameters were 0.985 mm on flapping surfaces, compared to 3.27 mm on stationary surfaces. Flapping increased droplet removal rates by two orders of magnitude and estimated water collection volume by 204 %. Estimated energy to flap was 17 W/m2, and this could be reduced or eliminated by self-flapping. This research will investigate the effects of flapping on flexible polymer films for water harvesting. Numerical simulations will determine accelerations required to motivate droplets, and understand the impact of flapping on water harvesting. Experimental validation will be conducted on flapping films/meshes in an environmental chamber, with conditions similar to a cooling tower plume. Also, experiments will be conducted using water samples from Wolf Creek Generating Station and Jeffrey Energy Center to determine recovered water quality, and will consider the first flush and subsequent samples to determine the change in water quality with time. Water quality assessment will focus on salinity, cations and anions, nutrients, and bacteria. Recovered water will be compared to irrigation standards for agricultural production, as well as power plant and industrial requirements. The proposed work will increase fundamental knowledge of droplet motion on flexible, flapping surfaces. Numerical simulations will yield flapping frequencies and amplitudes required for droplets to translate or eject from the surface. Droplet growth with respect to time will be determined with high-speed flow visualization using impinging droplets and condensing droplets. Flapping condenser surfaces will be studied at 301 K and 80 % RH, similar to cooling tower plume conditions. In addition to water collection rates, droplet nucleation, coalescence, and departure will be compared for flapping and stationary surfaces, resulting in an improved understanding of droplet dynamics on oscillating surfaces. Several mechanisms have been identified which may explain superior droplet motion on flapping surfaces: surface tension, air entrapment, and altered contact lines on soft, polymer surfaces. Numerical simulations and experimental validations will be conducted to determine the relative effects of these proposed mechanisms on water collection. Recovered water quality will be assessed and possible industrial and agricultural uses identified. The research objectives are to: 1. Understand the impact of flapping frequency (1-100 Hz) and amplitude on droplet coalescence and ejection from the surface. Butterflies, insects, and flags flap in this frequency range. 2. Model droplet behavior on a soft, flapping surface, including the effects of coalescence, gravity, acceleration, surface tension, and surface energy on droplet formation and motion. 3. Determine the effects of flapping on droplet sweeping and water collection in a controlled environment, similar to a cooling tower plume. 4. Assess recovered water quality for power plant and agricultural applications. In addition, the PIs and students will create an engineering outreach module for middle and high school girls, reaching 100 girls each year through the KAWSE program. The girls will create airbrushed T shirt designs. Using high speed videos, the girls will determine average paint droplet size and assess how paint droplet behavior changes with flapping, analogous to the flapping film for water collection. The relevance of this project to water conservation and daily life will interest and inspire the girls to pursue STEM careers. A simplified version of this module would be conducted every year at the Aggieville Mini Maker Faire, and will engage children in the local community.
1603737德比电力生产是一个非常水密集的过程,需要超过十加仑的水来产生每千瓦时的电力在美国发电厂冷却塔代表了一个有前途的领域,用于水收集,因为排污和蒸发的水可以回收和用于能源生产,工业或农业。薄,拍打聚合物薄膜/网格是一个潜在的变革过程,这将减少从空气中的热阻,通过聚合物的传导,和冷凝,从而增加总的水去除率。从初步的调查结果,液滴振荡的全氟烷氧基薄膜,在14赫兹的拍打从拍打表面喷出。平均液滴离开直径为0.985毫米的扑动表面,相比之下,3.27毫米的静止表面。拍打增加了两个数量级的液滴去除率和估计的水收集量的204%。估计的能量为17 W/m2,这可以减少或消除自扑翼。本研究将调查拍打对用于集水的柔性聚合物膜的影响。数值模拟将确定激励液滴所需的加速度,并了解拍打对水收集的影响。实验验证将在环境室中对拍打膜/网进行,条件类似于冷却塔羽流。此外,将使用来自狼溪发电站和杰弗里能源中心的水样进行实验,以确定回收的水质,并将考虑第一次冲洗和随后的样品,以确定水质随时间的变化。水质评估将侧重于盐度、阳离子和阴离子、营养物和细菌。将把收集的水与农业生产的灌溉标准以及发电厂和工业要求进行比较。建议的工作将增加液滴运动的柔性,扑动表面的基础知识。数值模拟将产生液滴平移或从表面喷射所需的拍打频率和振幅。液滴随时间的增长将通过使用撞击液滴和冷凝液滴的高速流动可视化来确定。将在301 K和80%RH下研究拍打式冷凝器表面,类似于冷却塔羽流条件。除了水的收集率,液滴成核,聚结,和离开将比较扑动和静止的表面,从而在一个更好的理解液滴动态振荡表面。已经确定了几种机制,可以解释拍打表面上的上级液滴运动:表面张力、空气滞留和柔软聚合物表面上改变的接触线。将进行数值模拟和实验验证,以确定这些建议的机制对水收集的相对影响。将对所监测的水质进行评估,并确定可能的工业和农业用途。本研究的目的是:1.了解拍打频率(1-100 Hz)和振幅对液滴聚结和从表面喷射的影响。蝴蝶、昆虫和旗帜在这个频率范围内摆动。2.在柔软的拍打表面上模拟液滴行为,包括聚结、重力、加速度、表面张力和表面能对液滴形成和运动的影响。3.确定在受控环境中扑翼对液滴清扫和水收集的影响,类似于冷却塔羽流。4.评估发电厂和农业应用的回收水质量。此外,PI和学生将为初中和高中女生创建一个工程外展模块,每年通过KAWSE计划接触100名女生。女孩们将创造喷刷T恤设计。使用高速视频,女孩们将确定平均油漆液滴大小,并评估油漆液滴行为如何随着拍打而变化,类似于拍打薄膜收集水。该项目与水资源保护和日常生活的相关性将吸引并激励女孩们追求STEM职业。该模块的简化版本每年都会在Aggieville Mini Maker Faire上进行,并吸引当地社区的儿童参与。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Heat and Mass Transfer in the Food, Energy, and Water Nexus—A Review
  • DOI:
    10.1115/1.4047089
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Derby;Allison N. Adams;P. Chakraborty;M. R. Haque;Ryan A. Huber;J. Morrow;G. A. Riley;M. Ross-M.-R
  • 通讯作者:
    M. Derby;Allison N. Adams;P. Chakraborty;M. R. Haque;Ryan A. Huber;J. Morrow;G. A. Riley;M. Ross-M.-R
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Melanie Derby其他文献

Melanie Derby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Melanie Derby', 18)}}的其他基金

Collaborative Research: RII Track-2 FEC: Supporting rural livelihoods in the water-stressed Central High Plains: Microbial innovations for climate-resilient agriculture (MICRA)
合作研究:RII Track-2 FEC:支持缺水的中部高原地区的农村生计:气候适应型农业的微生物创新 (MICRA)
  • 批准号:
    2316295
  • 财政年份:
    2023
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Cooperative Agreement
NRT-INFEWS: Preparing future leaders: Rural resource resiliency (R3)
NRT-INFEWS:培养未来的领导者:农村资源弹性(R3)
  • 批准号:
    1828571
  • 财政年份:
    2018
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
CAREER: Altering transient soil evaporation mechanisms through hydrophobicity
职业:通过疏水性改变瞬时土壤蒸发机制
  • 批准号:
    1651451
  • 财政年份:
    2017
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant

相似国自然基金

水下平面射流振翅运动与频率锁定现象
  • 批准号:
    10472046
  • 批准年份:
    2004
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Insect-inspired flapping wing robots: autonomous flight control systems
受昆虫启发的扑翼机器人:自主飞行控制系统
  • 批准号:
    DP240101140
  • 财政年份:
    2024
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Discovery Projects
Exploiting fully coupled fluid-structure interaction: optimal wing heterogeneity and efficient flow state estimation in flapping flight
利用完全耦合的流固相互作用:扑翼飞行中的最佳机翼异质性和有效的流动状态估计
  • 批准号:
    2320875
  • 财政年份:
    2023
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
Energy efficiency of flapping flight: understanding and exploitation
扑动飞行的能量效率:理解和利用
  • 批准号:
    2889142
  • 财政年份:
    2023
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Studentship
CAREER: Insect-scale Flapping-Wing Micro Aerial Robots Capable of Self-powered Hover and Agile Maneuvering
职业:昆虫规模扑翼微型空中机器人,具有自供电悬停和敏捷机动能力
  • 批准号:
    2236708
  • 财政年份:
    2023
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
A Novel Framework for Model Reduction and Data-Driven Modeling of Fluid-Structure System: Application to Flapping Dynamics
流固系统模型简化和数据驱动建模的新框架:在扑动动力学中的应用
  • 批准号:
    RGPIN-2019-05065
  • 财政年份:
    2022
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Discovery Grants Program - Individual
Flapping Molecules for Local Force / Local Viscosity Imaging with Ultra-low Threshold
用于超低阈值局部力/局部粘度成像的扑动分子
  • 批准号:
    21H01917
  • 财政年份:
    2021
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Physics-Informed (and -informative) Reinforcement Learning and Bio-Inspired Design of a Smart Morphing Flapping Wing for Dual Aerial/Aquatic Propulsion and Maneuvering
用于双空中/水中推进和操纵的智能变形扑翼的物理信息(和信息)强化学习和仿生设计
  • 批准号:
    RGPIN-2021-02645
  • 财政年份:
    2021
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Discovery Grants Program - Individual
Harnessing wind energy using a flapping aerofoil
利用扑动的机翼利用风能
  • 批准号:
    2590842
  • 财政年份:
    2021
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Studentship
A Novel Framework for Model Reduction and Data-Driven Modeling of Fluid-Structure System: Application to Flapping Dynamics
流固系统模型简化和数据驱动建模的新框架:在扑动动力学中的应用
  • 批准号:
    RGPIN-2019-05065
  • 财政年份:
    2021
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Discovery Grants Program - Individual
ENERGY EXCHANGE BETWEEN FLUID AND FLAPPING/BENDING STRUCTURES
流体和扑动/弯曲结构之间的能量交换
  • 批准号:
    RGPIN-2015-05945
  • 财政年份:
    2021
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了