Bio-inspired efficient pulsatile locomotion

仿生高效脉动运动

基本信息

  • 批准号:
    1604876
  • 负责人:
  • 金额:
    $ 28.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

PI: Leftwich, MeganProposal Number: 1604876The focus of this proposal is to determine the mechanism for high-performance swimming that is used by sea animals that move their flippers in a periodic manner. It is proposed to take real life experimental data for the motion of sea lions at the Smithsonian National Zoological park (SNZ) in Washington, DC, and to mathematically describe the maneuvering motion of these swimmers in order to design robotic prototypes. These prototypes will then be used in a laboratory setting to take detailed measurements of the flow around them. Findings from this research could lead to energy savings because of flow control around submerged objects (e.g., ships, submarines, unmanned robotic vehicles). To understand the hydrodynamics around a large animal, one must first characterize its kinematics. Previous efforts to do so, which inform this work, do not include quantitative descriptions of the relevant parameters for a detailed, controlled hydrodynamic study. At this time, it is proposed to conduct a comprehensive field study at the SNZ in Washington, DC. This study will provide a digital catalog of sea lion maneuvers and a detailed mathematical description of them. The study will initially focus on steady swimming behavior (the "clap") before progressing to include turning, accelerating and other advanced maneuvers. Both two- and three-dimensional data will be obtained using three synchronized digital cameras. This required significant development of markerless three-dimensional tracking techniques for large free-swimming bodies. While methods exist for small-scale motion (insects) or highly predictable motions (human walking), these tools are not available for general locomotion with an unknown trajectory. Once the kinematic data are in place, a replicate will be crated that will be a hydrodynamically quiet unsteady propulsor in a laboratory setting. While observational data of swimming sea lions offer insight into such propulsion, it is not sufficient to understand its hydrodynamic effects on the surroundings. The work proposed here will lay the foundation for the design and construction of a robotic sea lion fore flipper. Finally, high-magnification images of the propulsive surface will allow the investigation of its natural flow control abilities. Educational initiatives involve graduate, undergraduate and high school students. In addition, through the Friends of the National Zoo (FONZ) program, the PI will participate in educational programs at the SNZ including lectures and the creation of educational displays and interactive modules within the California sea lion exhibit. Finally, recent and ongoing media interest in this work provides a platform for dialogs about fluid dynamics with the general public.
主要研究者:Leftwich,MeganProposal编号:1604876本提案的重点是确定海洋动物周期性移动鳍状肢的高性能游泳机制。建议采取真实的生活中的实验数据,在史密森国家动物园(SNZ)在华盛顿,DC海狮的运动,并数学描述这些游泳者的机动运动,以设计机器人原型。然后,这些原型将在实验室环境中使用,以详细测量它们周围的流动。这项研究的发现可能会导致节能,因为水下物体周围的流动控制(例如,船舶、潜艇、无人驾驶机器人车辆)。要了解大型动物周围的流体动力学,首先必须描述其运动学特征。以前的努力,这样做,告知这项工作,不包括定量描述的相关参数的详细的,受控的流体动力学研究。此时,建议在华盛顿特区的SNZ进行全面的实地研究。这项研究将提供一个数字目录海狮演习和详细的数学描述。这项研究最初将集中在稳定的游泳行为(“拍手”),然后再进行包括转身,加速和其他高级动作。二维和三维数据将使用三台同步数码相机获得。这就需要大力发展大型自由游动体的无标记三维跟踪技术。虽然存在用于小规模运动(昆虫)或高度可预测运动(人类行走)的方法,但这些工具不适用于具有未知轨迹的一般运动。一旦运动学数据到位,一个复制品将被装箱,这将是一个流体动力学安静的非定常推进器在实验室设置。虽然海狮游泳的观测数据提供了对这种推进的深入了解,但还不足以了解其对周围环境的流体动力学影响。本文的研究工作将为海狮前鳍的设计和建造奠定基础。最后,推进表面的高放大率图像将允许其自然流动控制能力的调查。教育举措涉及研究生、本科生和高中生。此外,通过国家动物园之友(FONZ)计划,PI将参与SNZ的教育计划,包括讲座和在加州海狮展览中创建教育展示和互动模块。最后,最近和正在进行的媒体对这项工作的兴趣提供了一个平台,与公众有关流体动力学的对话。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Megan Leftwich其他文献

Megan Leftwich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Megan Leftwich', 18)}}的其他基金

EAGER: The fluid dynamics of human birth
渴望:人类出生的流体动力学
  • 批准号:
    1437611
  • 财政年份:
    2014
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant

相似国自然基金

多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
  • 批准号:
    51973054
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Continuing Grant
CAREER: Toward energy-efficient bio-inspired magnonic processing with nanomagnetic arrays
职业:利用纳米磁性阵列实现节能的仿生磁力处理
  • 批准号:
    2339475
  • 财政年份:
    2024
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Continuing Grant
Investigating bio-inspired architectures for efficient computation
研究仿生架构以实现高效计算
  • 批准号:
    2894696
  • 财政年份:
    2022
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Studentship
CAREER: Bio-inspired Multi-joint Design and Control for Efficient and Lightweight Wearable Robots
职业:高效、轻型可穿戴机器人的仿生多关节设计和控制
  • 批准号:
    2046287
  • 财政年份:
    2021
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
Development of a quadruped robot with bio-inspired mechanisms for highly efficient dynamic locomotion
开发具有仿生机制的四足机器人,实现高效动态运动
  • 批准号:
    20K22389
  • 财政年份:
    2020
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Bio-inspired Smart Attachment and Adaptive Neuromechanical Control for Highly Efficient Locomotion and Adaptation to an Autonomous Climbing Robot
仿生智能附件和自适应神经机械控制可实现自主攀爬机器人的高效运动和适应
  • 批准号:
    410547361
  • 财政年份:
    2019
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Research Grants
Toward Energy-Efficient, Bio-Inspired Circuits and Systems for Error-Resilient and Biomedical Applications
面向防错和生物医学应用的节能、仿生电路和系统
  • 批准号:
    RGPIN-2015-06007
  • 财政年份:
    2019
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Discovery Grants Program - Individual
Toward Energy-Efficient, Bio-Inspired Circuits and Systems for Error-Resilient and Biomedical Applications
面向防错和生物医学应用的节能、仿生电路和系统
  • 批准号:
    RGPIN-2015-06007
  • 财政年份:
    2018
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Discovery Grants Program - Individual
Toward Energy-Efficient, Bio-Inspired Circuits and Systems for Error-Resilient and Biomedical Applications
面向防错和生物医学应用的节能、仿生电路和系统
  • 批准号:
    RGPIN-2015-06007
  • 财政年份:
    2017
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Discovery Grants Program - Individual
Bio-inspired propulsors for efficient and high-speed locomotion, and energy harvesting
用于高效高速运动和能量收集的仿生推进器
  • 批准号:
    487807-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了