Imaging Morphology, Ion Conductance and Degradation Processes in Energy Materials on the Nanometer Scale Using Tunneling Atomic Force Microscopy
使用隧道原子力显微镜对纳米级能源材料的形态、离子电导和降解过程进行成像
基本信息
- 批准号:1608914
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Number: 1608914 PI: Buratto, S.Imaging Morphology, Ion Conductance and Degradation Processes in Energy Materials on the Nanometer Scale Using Tunneling Atomic Force MicroscopyPolymer electrolyte membranes (PEMs) are key components in electrochemical devices such as fuel cells and redox flow batteries. These devices are capable of producing clean energy with high efficiency and are useful in tandem with intermittent renewable electricity generation technologies using wind or solar when the wind or sun is not available and also to store electricity in the form of chemical energy for energy storage. PEMs are, in general, composed of a polymer with a hydrophobic backbone and side chains terminated with hydrophilic functional groups. When this polymer is cast in films to make the membrane, phase separation between the hydrophobic and hydrophilic segments results in a random nanoscale network of hydrophilic channels through which ions are transported and hydrophobic domains that give the membrane mechanical strength. Novel membrane chemistries are currently under development, especially alkaline electrolyte membranes, but require feedback from characterization efforts, especially on the nanometer scale, in order to understand ion conductance and its dependence on the pore network structure. Another key question is how the membrane degrades during operation and that impacts the performance of the device. This project addresses this need for fundamental understanding on how degradation occurs in these types of electrochemical devices. Knowledge gained will help to close the feedback loop between designing the membrane's structure and its resultant function. Students working on this research will learn about alternative power sources, help optimize membrane function, and provide valuable insight and inspiration into the development of the next-generation membrane materials. This project leverages a suite of experimental methods that utilize tapping (or AC) mode atomic force microscopy (AFM) and conductive probe AFM (cAFM) to probe the pore connectivity and ion transport in proton-conducting membranes such as PEMs. The Principal Investigator and his research group have developed these techniques. In this project, the tools are adapted and applied to the study of alkaline electrolyte membranes, which transport hydroxide ions. Under alkaline conditions, the oxygen reduction half-reaction has significantly improved kinetics, obviating the need for precious metal catalysts. This project's transformative feature includes the characterization of PEM membrane morphology and hydroxide-ion conductance on the nanometer length scale to provide a link between morphology and conductance. The project also includes the investigation of the ion domain morphology and connectivity in vanadium redox flow batteries that utilize proton-conducting membranes under drastically different operating conditions than the alkaline fuel cells. These experiments probe the dependence of the pore network structure on the electrolyte concentration, the degree of vanadium ion penetration into the membrane and the prolonged exposure of the membrane surface to water and heat. The ultimate goal is fundamental understanding of ion conduction, in terms of the size and distribution of the chemical domains responsible for the transport in both alkaline fuel cells and vanadium flow cell batteries. In both systems, ion conductance will be studied systematically as a function of (1) the device operating conditions, (2) the membrane type, and (3) the degree of membrane degradation and decomposition.
提案编号:1608914 PI:Buratto,S.使用Tunnel原子力显微镜在纳米尺度上成像能量材料的形态、离子电导和降解过程聚合物电解质膜(PEM)是电化学装置如燃料电池和氧化还原液流电池的关键部件。这些装置能够以高效率产生清洁能源,并且当风或太阳不可用时与使用风或太阳能的间歇性可再生发电技术协同使用,并且还以化学能的形式存储电力用于能量存储。PEM通常由具有疏水主链和以亲水官能团封端的侧链的聚合物组成。当这种聚合物被浇铸成膜以制造膜时,疏水和亲水片段之间的相分离导致亲水通道的随机纳米级网络,离子通过该网络被传输,并且疏水域赋予膜机械强度。新型膜化学目前正在开发中,特别是碱性电解质膜,但需要从表征工作中得到反馈,特别是在纳米尺度上,以了解离子电导及其对孔网络结构的依赖性。另一个关键问题是膜在操作过程中如何降解,这会影响设备的性能。该项目解决了对这些类型的电化学设备如何发生降解的基本理解的需求。所获得的知识将有助于关闭膜结构设计与其最终功能之间的反馈回路。从事这项研究的学生将了解替代电源,帮助优化膜功能,并为下一代膜材料的开发提供宝贵的见解和灵感。该项目利用一套实验方法,利用轻敲(或AC)模式原子力显微镜(AFM)和导电探针AFM(cAFM)探测质子传导膜(如PEM)中的孔连通性和离子传输。首席研究员和他的研究小组开发了这些技术。在这个项目中,这些工具被改编并应用于碱性电解质膜的研究,它传输氢氧离子。在碱性条件下,氧还原半反应具有显著改善的动力学,避免了对贵金属催化剂的需要。该项目的变革性特征包括PEM膜形态和氢氧离子电导在纳米长度尺度上的表征,以提供形态和电导之间的联系。该项目还包括对钒氧化还原液流电池中离子域形态和连通性的研究,该电池在与碱性燃料电池截然不同的操作条件下使用质子传导膜。这些实验探讨了孔网络结构对电解质浓度、钒离子渗透到膜中的程度以及膜表面长时间暴露于水和热的依赖性。最终目标是从根本上理解离子传导,即碱性燃料电池和钒液流电池中负责运输的化学域的大小和分布。在这两个系统中,将系统地研究离子电导率作为(1)设备操作条件,(2)膜类型和(3)膜降解和分解程度的函数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Buratto其他文献
Steven Buratto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Buratto', 18)}}的其他基金
Model Inverse Nanocluster Catalysts: The Role of Size, Shape and Composition on the Catalytic Activity of Small Metal Oxide Clusters on Metal Surfaces
逆纳米团簇催化剂模型:尺寸、形状和组成对金属表面小金属氧化物团簇催化活性的作用
- 批准号:
1664995 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Model Nanocluster Catalysts: The Role of Size, Shape and Composition on the Catalytic Activity of Small Metal Oxide and Bimetallic Clusters on Oxide Surfaces
模型纳米团簇催化剂:尺寸、形状和组成对氧化物表面小金属氧化物和双金属团簇催化活性的作用
- 批准号:
1152229 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Connectivity and ION Conductions in Fuel Cell Membranes Probed by Tunneling Atomic Force Microscopy
通过隧道原子力显微镜探测燃料电池膜中的连通性和离子传导
- 批准号:
1213950 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Model Nanocluster Catalysts: The Role of Size, Shape and Composition on the Catalytic Activity of Monometallic, Bimetallic and Metal Oxide Clusters on Oxide Surfaces
模型纳米团簇催化剂:尺寸、形状和组成对氧化物表面上单金属、双金属和金属氧化物团簇催化活性的作用
- 批准号:
0749489 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Probing and Manipulating the Luminescence Properties of Porous Semiconductor Nanoparticles
探测和操纵多孔半导体纳米颗粒的发光特性
- 批准号:
0316231 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Near-Field Optical Spectroscopic Studies of Thin Film Materials
薄膜材料的近场光学光谱研究
- 批准号:
9501773 - 财政年份:1995
- 资助金额:
$ 30万 - 项目类别:
Continuing grant
NSF Young Investigator: Photoinitiated Reactions in Ion-Molecule Complexes
NSF 青年研究员:离子分子复合物中的光引发反应
- 批准号:
9457668 - 财政年份:1994
- 资助金额:
$ 30万 - 项目类别:
Continuing grant
相似海外基金
Evolution of hierarchically structured ion conducting porous polymers with designable morphology for ionotronic sensors
用于离子电子传感器的具有可设计形态的分层结构离子导电多孔聚合物的演变
- 批准号:
22K14746 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Morphology control of electron-ion mixed conducting polymer electrolyte and application to electrochemical devices
电子-离子混合导电聚合物电解质的形貌控制及其在电化学器件中的应用
- 批准号:
20K05628 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Visualizing and Quantifying the Electrode Morphology Within a Lithium Ion Battery
锂离子电池内电极形态的可视化和量化
- 批准号:
526478-2018 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards
Control of defects and surface morphology on strained Si/SiGe/Si(110) structure using the ion implantation method
使用离子注入方法控制应变 Si/SiGe/Si(110) 结构的缺陷和表面形貌
- 批准号:
18K04229 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel ceramic-polymer hybrid electrolytes for Li-ion solid state batteries: interrelation of interface structure and morphology with ion transport
用于锂离子固态电池的新型陶瓷聚合物混合电解质:界面结构和形态与离子传输的相互关系
- 批准号:
336986971 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Research Grants
Rational tuning and thermodynamic characterization of Lithium silicides and lithium iron phosphate as electrode materials for lithium ion batteries - Calorimetric, kinetic and theoretical investigations of the relations between reactivity, morphology and
硅化锂和磷酸铁锂作为锂离子电池电极材料的合理调节和热力学表征 - 反应性、形态和性能之间关系的量热、动力学和理论研究
- 批准号:
180078959 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Priority Programmes
Polymer surface morphology control by reactive ion etching and its application
反应离子刻蚀聚合物表面形貌控制及其应用
- 批准号:
22510132 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Materials World Network: Growth, Kinetics, and Morphology of Multi-Layered Organic Thin Films via Low-Energy Secondary Ion Mass Spectrometry
材料世界网络:通过低能二次离子质谱法研究多层有机薄膜的生长、动力学和形态
- 批准号:
0806867 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
U.S.-Korea Cooperative Science: Morphology of Ion Bombarded Surfaces
美韩合作科学:离子轰击表面的形态学
- 批准号:
9910426 - 财政年份:2000
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MORPHOLOGY CONTROL OF ORGANIC THIN FILMS BY ION-BEAM-ASSISTED DEPOSITION AND THEIR APPLICATION TO E.L.DIODE
离子束辅助沉积有机薄膜形貌控制及其在电场二极管中的应用
- 批准号:
06650378 - 财政年份:1994
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)