RAISE-TAQS: Inverting the design paradigm: Tunable qubits in hybrid photonic materials as a scalable platform for quantum photonic devices

RAISE-TAQS:反转设计范式:混合光子材料中的可调谐量子位作为量子光子器件的可扩展平台

基本信息

  • 批准号:
    1839056
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-15 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The advent of solid state electronics altered human society through the emergence of small, portable, and powerful computers. Quantum technologies promise an equally revolutionary change in information transmission, information processing, and sensing. However, there is an enormous gap between the existing demonstration of few-bit devices and the highly integrated multi-bit devices required to realize these potential gains. New paradigms for the design of scalable, robust quantum devices are the key to realizing the potential of this field. One of the major challenges is that traditional electronic devices contain many instances of a small number of fundamental components (e.g. transistors). The tiny, but inevitable, variation between each component can be overcome by using components such as amplifiers and discriminators. However, components like amplifiers cannot be used in quantum devices. As a result, most simple quantum devices to date have engineered the entire device around the unique properties of the particular quantum bits that are available. This approach is not scalable. We propose to develop a new design strategy that will allow the individual quantum bits to be tuned after fabrication and during device operation. We believe this approach will not only overcome the scalability challenges, but will also enable a new form of quantum parallel processing that will speed up device operation. We will develop the materials and device architectures that allow the tuning while preserving the strong interactions between the quantum bits that are crucial for quantum device operation. We will also develop new algorithms that take advantage of this parallel processing opportunity. We will train students for the emerging field of quantum device engineering through a series of new courses and summer research programs.TechnicalWe propose to invert the design paradigm for quantum devices, creating a platform in which each qubit can be tuned into resonance with a device-level design wavelength. Our prototype qubit will be the orientation of a single hole spin confined in an InAs Quantum Dot Molecule (QDM): a closely spaced pair of QDs in which the emission / absorption wavelength tunes strongly with applied electric field. Conceptually, the proof-of-concept device we will develop is fairly simple: a photonic crystal cavity containing multiple qubits that can be individually tuned into resonance with the cavity mode in order to controllably implement quantum logic functions. To realize this concept, we will develop metal / dielectric metamaterials that can be grown within III-V epitaxial structures. We will develop and employ inverse design methods to create photonic cavities that leverage these new metamaterials to allow application of electric fields to individual qubits while retaining high cavity quality (Q) and small cavity mode volume (V). In parallel, we will design high fidelity gates that build toward single-shot three-qubit gates that enable faster computation and lower circuit depth. We will train students for the emerging field of quantum device engineering through: 1) A cohort undergraduate researcher exchange program; 2) Development of a new undergrad / grad course on photonic metamaterials; and 3) A two-week hands-on summer program for high school underrepresented minorities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
固态电子产品的出现改变了人类社会,出现了小型、便携式和功能强大的计算机。量子技术有望在信息传输、信息处理和传感方面带来同样革命性的变化。然而,现有的几位设备演示与实现这些潜在收益所需的高度集成的多位设备之间存在着巨大的差距。设计可扩展的、健壮的量子设备的新范例是实现该领域潜力的关键。主要挑战之一是,传统电子设备包含少量基本组件(例如晶体管)的许多实例。每个组件之间微小但不可避免的差异可以通过使用放大器和鉴别器等组件来克服。然而,像放大器这样的部件不能用于量子设备。因此,到目前为止,大多数简单的量子设备都是围绕可用的特定量子比特的独特属性来设计整个设备。这种方法是不可扩展的。我们建议开发一种新的设计策略,允许在制造后和器件运行期间对单个量子比特进行调谐。我们相信,这种方法不仅将克服可伸缩性挑战,还将实现一种新形式的量子并行处理,将加快设备操作。我们将开发允许调谐的材料和设备架构,同时保留对量子设备操作至关重要的量子比特之间的强烈相互作用。我们还将开发利用这一并行处理机会的新算法。我们将通过一系列新的课程和暑期研究计划,为新兴的量子设备工程领域培养学生。技术我们建议颠覆量子设备的设计范式,创建一个平台,在其中每个量子比特都可以与设备级设计波长共振。我们的原型量子比特将是限制在InAs量子点分子(QDM)中的单个空穴自旋的取向:一对紧密间隔的量子点,其中发射/吸收波长与外加电场强烈调谐。从概念上讲,我们将开发的概念验证设备相当简单:一个包含多个量子比特的光子晶体腔,这些量子比特可以单独调谐到与腔模式的共振,以便可控地实现量子逻辑功能。为了实现这一概念,我们将开发可以在III-V外延结构中生长的金属/介电超材料。我们将开发和使用反向设计方法来创建光子腔,这些方法利用这些新的超材料来允许向单个量子比特施加电场,同时保持高腔质量(Q)和小腔模体积(V)。与此同时,我们将设计高保真的门,使之朝着单激发三量子位门的方向发展,从而实现更快的计算和更低的电路深度。我们将通过以下方式为新兴的量子设备工程领域培训学生:1)本科生研究人员交流计划;2)开发新的本科生/研究生光子超材料课程;3)为未被充分代表的少数族裔的高中学生提供为期两周的实践暑期计划。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An image analysis method for quantifying precision and disorder in nanofabricated photonic structures
一种量化纳米制造光子结构精度和无序度的图像分析方法
  • DOI:
    10.1088/1361-6528/ac99e7
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Carfagno, Henry;Garcia, Pedro David;Doty, Matthew F
  • 通讯作者:
    Doty, Matthew F
Techniques for epitaxial site-selective growth of quantum dots
量子点选点外延生长技术
Improved epitaxial growth of TbAs film on III–V semiconductors
改进 III-V 族半导体上 TbAs 薄膜的外延生长
  • DOI:
    10.1116/1.5144999
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Wang, Yuejing;Bork, James;Law, Stephanie;Zide, Joshua M. O.
  • 通讯作者:
    Zide, Joshua M. O.
Driven dynamics of a quantum dot electron spin coupled to a bath of higher-spin nuclei
与高自旋核浴耦合的量子点电子自旋的驱动动力学
  • DOI:
    10.1103/physrevb.103.235301
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Vezvaee, Arian;Sharma, Girish;Economou, Sophia E.;Barnes, Edwin
  • 通讯作者:
    Barnes, Edwin
A sleeve and bulk method for fabrication of photonic structures with features on multiple length scales
一种用于制造具有多个长度尺度特征的光子结构的套筒和体方法
  • DOI:
    10.1088/1361-6528/ac9391
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Carfagno, H S;McCabe, L N;Zide, J M;Doty, M F
  • 通讯作者:
    Doty, M F
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Doty其他文献

Matthew Doty的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Doty', 18)}}的其他基金

S-STEM Collaborative Planning Grant: An accelerated 3+2 pathway to BS and MS degrees in Semiconductor Manufacturing and Quantum Science disciplines
S-STEM 协作规划补助金:获得半导体制造和量子科学学科学士和硕士学位的加速 3 2 途径
  • 批准号:
    2322670
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
OP: Spatial and spectral control of quantum dot single photon emitters for scalable photonic devices
OP:用于可扩展光子器件的量子点单光子发射器的空间和光谱控制
  • 批准号:
    1609157
  • 财政年份:
    2016
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
MRI: Development of a system for low temperature optical measurement of 3D magnon, plasmon and spin torque transfer dynamics.
MRI:开发用于 3D 磁振子、等离激元和自旋扭矩传递动力学低温光学测量的系统。
  • 批准号:
    1624976
  • 财政年份:
    2016
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: Spin Physics `by design' in quantum dot molecules
合作研究:量子点分子中“设计”的自旋物理
  • 批准号:
    1505574
  • 财政年份:
    2015
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Developing a tunable single-spin bit for scalable spin-based optoelectronics
开发用于可扩展的基于自旋的光电子学的可调谐单自旋位
  • 批准号:
    1101754
  • 财政年份:
    2011
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CAREER: Controllable Coupling of Quantum Dots in Scalable Architectures
职业:可扩展架构中量子点的可控耦合
  • 批准号:
    0844747
  • 财政年份:
    2009
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
  • 批准号:
    2326748
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了