CDS&E: Elucidating and Controlling the Spectral, Spatial and Temporal Responses of Plasmonic Nanostructures based on a Data-Driven Approach

CDS

基本信息

  • 批准号:
    2202268
  • 负责人:
  • 金额:
    $ 46.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYPlasmonic nanostructures are tiny particles made of noble metals, such as gold and silver. They can concentrate light into extremely small dimensions and significantly enhance the light intensity. The unique properties of plasmonic nanostructures have produced many applications, including solar energy harvesting, biomedical sensing, diagnostics and therapy. The objective of this project is to establish a framework based on deep learning, a subset of artificial intelligence, to elucidate and control the physical properties of plasmonic nanostructures by fusing theory, computation, deep learning algorithms, and experiments. Recent work has demonstrated that deep learning can discover the highly complicated and non-intuitive relationships between photonic structures and their properties through extensive data, overcoming the limitations of conventional analytical and numerical methods. To further advance this emergent field, the PI will enhance the capability of deep learning models by considering more degrees of freedom, such as electric and magnetic field distributions, time-dependent responses, and multi-physics processes in plasmonic nanostructures. The predictions of the deep learning models will be directly validated by experiments, which will provide important feedback and additional data to improve the model capability.This award also supports a comprehensive education plan that will include innovative activities at the Grade 7-12, undergraduate, and graduate levels. Special efforts will be made to attract and educate students from underrepresented ethnic/racial and gender groups, and broaden their knowledge in photonics, materials science, applied physics, and artificial intelligence. Part of the research findings will be used to develop new course materials to introduce the latest development in the fields to the students at Northeastern University. The PI will also create a new outreach activity, in which local high-school students will learn about optical properties of plasmonic nanostructures.TECHNICAL SUMMARYThis award supports computational and experimental research aimed at effectively harnessing light-matter interactions in the spectral, spatial, and temporal domains by leveraging advanced deep learning techniques and using plasmonic nanostructures as the platform. The project consists of three research thrusts: (1) developing a general approach to model the spatial distribution of the electric and magnetic fields of complex plasmonic nanostructures with high efficiency, accuracy and fidelity, which is critical to engineer nonlinear optical effects at user-defined wavelengths; (2) investigating the hot-electron-induced temporal responses and the resulting transient multi-physics processes of plasmonic nanostructures by integrating deep learning, Fourier transform and governing equations; and (3) fabricating plasmonic nanostructures with canonical and freeform shapes, and experimentally characterizing them using advanced microscopy and spectroscopy techniques. The data-centric framework enabled by deep learning will help to uncover the physics behind plasmonic nanostructures and other photonic designs. It will provide deep insights into a series of fundamental problems, such as topology, symmetry, and non-equilibrium dynamics, with fine spatial and temporal resolution.This award also supports a comprehensive education plan that will include innovative activities at the Grade 7-12, undergraduate, and graduate levels. Special efforts will be made to attract and educate students from underrepresented ethnic/racial and gender groups, and broaden their knowledge in photonics, materials science, applied physics, and artificial intelligence. Part of the research findings will be used to develop new course materials to introduce the latest development in the fields to the students at Northeastern University. The PI will also create a new outreach activity, in which local high-school students will learn about optical properties of plasmonic nanostructures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术概述等离子体纳米结构是由贵金属(例如金和银)制成的微小颗粒。它们可以将光聚集到极小的尺寸中,并显着增强光强度。等离子体纳米结构的独特性质产生了许多应用,包括太阳能收集、生物医学传感、诊断和治疗。该项目的目标是建立一个基于深度学习的框架,人工智能的一个子集,通过融合理论,计算,深度学习算法和实验来阐明和控制等离子体纳米结构的物理特性。最近的研究表明,深度学习可以通过大量数据发现光子结构及其特性之间高度复杂和非直观的关系,克服传统分析和数值方法的局限性。为了进一步推动这一新兴领域的发展,PI将通过考虑更多的自由度来增强深度学习模型的能力,例如电场和磁场分布,时间依赖性响应以及等离子体纳米结构中的多物理过程。深度学习模型的预测将通过实验直接验证,这将提供重要的反馈和额外的数据,以提高模型的能力。该奖项还支持一个全面的教育计划,其中包括7-12年级,本科和研究生水平的创新活动。将特别努力吸引和教育来自代表性不足的民族/种族和性别群体的学生,并扩大他们在光子学,材料科学,应用物理学和人工智能方面的知识。部分研究成果将用于开发新的课程材料,向东北大学的学生介绍该领域的最新发展。PI还将创建一个新的外展活动,让当地高中生了解等离子体纳米结构的光学特性。技术概述该奖项支持旨在利用先进的深度学习技术和使用等离子体纳米结构作为平台,有效利用光谱,空间和时间域中的光-物质相互作用的计算和实验研究。该项目包括三个研究重点:(1)开发一种通用方法来模拟复杂等离子体纳米结构的电场和磁场的空间分布,具有高效率,准确性和保真度,这对于在用户定义的波长下设计非线性光学效应至关重要;(2)研究了热电子诱导的时间响应和由此产生的瞬态多通过整合深度学习、傅立叶变换和控制方程,研究等离子体纳米结构的物理过程;以及(3)制造具有规范和自由形状的等离子体纳米结构,并使用先进的显微镜和光谱技术对其进行实验表征。由深度学习实现的以数据为中心的框架将有助于揭示等离子体纳米结构和其他光子设计背后的物理学。该奖项将提供对拓扑学、对称性和非平衡动力学等一系列基本问题的深刻见解,并具有良好的空间和时间分辨率。该奖项还支持一项全面的教育计划,其中包括7-12年级、本科和研究生阶段的创新活动。将特别努力吸引和教育来自代表性不足的民族/种族和性别群体的学生,并扩大他们在光子学,材料科学,应用物理学和人工智能方面的知识。部分研究成果将用于开发新的课程材料,向东北大学的学生介绍该领域的最新发展。PI还将创建一个新的外展活动,让当地高中生了解等离子体纳米结构的光学特性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Software-defined nanophotonic devices and systems empowered by machine learning
  • DOI:
    10.1016/j.pquantelec.2023.100469
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    11.7
  • 作者:
    Yihao Xu;Bo Xiong;Wei Ma;Yongmin Liu
  • 通讯作者:
    Yihao Xu;Bo Xiong;Wei Ma;Yongmin Liu
Hybrid inverse design of photonic structures by combining optimization methods with neural networks
Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise
  • DOI:
    10.1126/science.ade5140
  • 发表时间:
    2023-01-20
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Xiong, Bo;Liu, Yu;Wang, Mu
  • 通讯作者:
    Wang, Mu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongmin Liu其他文献

SMALL HANKEL OPERATORS ON WEIGHTED BERGMAN SPACES OF BOUNDED SYMMETRIC DOMAINS
  • DOI:
    10.1016/s0252-9602(17)30728-2
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Yongmin Liu
  • 通讯作者:
    Yongmin Liu
Reconstruction of Cretaceous-Eocene arcs along the southern Asian margin under Neo-Tethyan subduction
新特提斯洋俯冲作用下亚洲南缘白垩纪 - 始新世岛弧的重建
  • DOI:
    10.1016/j.lithos.2025.107995
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Yongmin Liu;Weiming Fan;Touping Peng;Rendeng Shi;Shengsheng Chen;Pengpeng Huangfu
  • 通讯作者:
    Pengpeng Huangfu
Fluorescence enhancement by a two-dimensional dielectric annular Bragg resonant cavity.
二维介电环形布拉格谐振腔的荧光增强。
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Yongmin Liu;Sheng Wang;Yong;Xiaobo Yin;Xiang Zhang
  • 通讯作者:
    Xiang Zhang
Controlling Electric and Magnetic Resonances for Ultra-Compact Nanoantennas with Switchable Directionality
控制具有可切换方向性的超紧凑纳米天线的电磁共振
  • DOI:
    10.1364/ls.2015.lth3i.4
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kan Yao;Yongmin Liu
  • 通讯作者:
    Yongmin Liu
Accelerated photonic design of coolhouse film for photosynthesis via machine learning
通过机器学习加速用于光合作用的温室薄膜的光子设计
  • DOI:
    10.1038/s41467-024-54983-8
  • 发表时间:
    2025-02-06
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Jinlei Li;Yi Jiang;Bo Li;Yihao Xu;Huanzhi Song;Ning Xu;Peng Wang;Dayang Zhao;Zhe Liu;Sheng Shu;Juyou Wu;Miao Zhong;Yongguang Zhang;Kefeng Zhang;Bin Zhu;Qiang Li;Wei Li;Yongmin Liu;Shanhui Fan;Jia Zhu
  • 通讯作者:
    Jia Zhu

Yongmin Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongmin Liu', 18)}}的其他基金

Non-Hermitian and Topological Plasmonic Devices for Light Manipulation at the Nanoscale
用于纳米级光操纵的非厄米和拓扑等离激元器件
  • 批准号:
    2136168
  • 财政年份:
    2021
  • 资助金额:
    $ 46.58万
  • 项目类别:
    Standard Grant
Multi-Functional Optical Meta-Systems Enabled by Deep-Learning-Aided Inverse Design
由深度学习辅助逆向设计实现的多功能光学元系统
  • 批准号:
    1916839
  • 财政年份:
    2019
  • 资助金额:
    $ 46.58万
  • 项目类别:
    Standard Grant
Chiroptical Sensing and Sorting by Structured Materials and Structured Light
通过结构材料和结构光进行手性光学传感和分类
  • 批准号:
    1931777
  • 财政年份:
    2019
  • 资助金额:
    $ 46.58万
  • 项目类别:
    Standard Grant
CAREER: Spin Plasmonics for Ultrafast All-Optical Manipulation of Magnetization in Hybrid Metal-Ferromagnet Structures
职业:用于混合金属-铁磁体结构中磁化的超快全光学操纵的自旋等离子体
  • 批准号:
    1654192
  • 财政年份:
    2017
  • 资助金额:
    $ 46.58万
  • 项目类别:
    Continuing Grant

相似海外基金

Elucidating the genetic mechanism controlling the growth of primary and lateral roots in soybean
阐明控制大豆主根和侧根生长的遗传机制
  • 批准号:
    23K05172
  • 财政年份:
    2023
  • 资助金额:
    $ 46.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidating the differential contribution of sulfonation and glucuronidation in controlling nuclear receptor activity.
阐明磺化和葡萄糖醛酸化在控制核受体活性中的不同贡献。
  • 批准号:
    RGPIN-2021-04371
  • 财政年份:
    2022
  • 资助金额:
    $ 46.58万
  • 项目类别:
    Discovery Grants Program - Individual
Elucidating and targeting functional structure of peritoneal matrisome for controlling advanced ovarian cancer
阐明和靶向腹膜基质体的功能结构以控制晚期卵巢癌
  • 批准号:
    21KK0296
  • 财政年份:
    2022
  • 资助金额:
    $ 46.58万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Elucidating the biogeochemical processes controlling natural source zone depletion (NSZD) of petroleum hydrocarbons in contaminated soils under dynamic redox conditions
阐明动态氧化还原条件下控制污染土壤中石油烃自然源区耗竭(NSZD)的生物地球化学过程
  • 批准号:
    533227-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 46.58万
  • 项目类别:
    Collaborative Research and Development Grants
Elucidating the differential contribution of sulfonation and glucuronidation in controlling nuclear receptor activity.
阐明磺化和葡萄糖醛酸化在控制核受体活性中的不同贡献。
  • 批准号:
    RGPIN-2021-04371
  • 财政年份:
    2021
  • 资助金额:
    $ 46.58万
  • 项目类别:
    Discovery Grants Program - Individual
Elucidating the biogeochemical processes controlling natural source zone depletion (NSZD) of petroleum hydrocarbons in contaminated soils under dynamic redox conditions
阐明动态氧化还原条件下控制污染土壤中石油烃自然源区耗竭(NSZD)的生物地球化学过程
  • 批准号:
    533227-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 46.58万
  • 项目类别:
    Collaborative Research and Development Grants
Establishment of artificial insemination method with bovine sex-sorted semen by controlling uterine immune response and elucidating the control mechanism
控制子宫免疫反应建立牛性别分选精液人工授精方法并阐明控制机制
  • 批准号:
    19K16010
  • 财政年份:
    2019
  • 资助金额:
    $ 46.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidating the biogeochemical processes controlling natural source zone depletion (NSZD) of petroleum hydrocarbons in contaminated soils under dynamic redox conditions
阐明动态氧化还原条件下控制污染土壤中石油烃自然源区耗竭(NSZD)的生物地球化学过程
  • 批准号:
    533227-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 46.58万
  • 项目类别:
    Collaborative Research and Development Grants
Elucidating cellular pathways controlling the reactive state of astrocytes in Alzheimer's Disease
阐明控制阿尔茨海默氏病星形胶质细胞反应状态的细胞途径
  • 批准号:
    10302261
  • 财政年份:
    2019
  • 资助金额:
    $ 46.58万
  • 项目类别:
Elucidating cellular pathways controlling the reactive state of astrocytes in Alzheimer's Disease
阐明控制阿尔茨海默氏病星形胶质细胞反应状态的细胞途径
  • 批准号:
    10025376
  • 财政年份:
    2019
  • 资助金额:
    $ 46.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了