MRI: Development of a system for low temperature optical measurement of 3D magnon, plasmon and spin torque transfer dynamics.
MRI:开发用于 3D 磁振子、等离激元和自旋扭矩传递动力学低温光学测量的系统。
基本信息
- 批准号:1624976
- 负责人:
- 金额:$ 65.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past 15 years scientists and engineers have realized that integrating logic and information storage functions could dramatically improve the energy efficiency of computing devices and enable new and more powerful computing paradigms. Promising materials for creating such a device include those materials in which electrical current strongly interacts with the spin of electrons. The spin of an electron can be thought of as a tiny bar magnet attached to the electron in which the north pole of the magnet can be oriented up, down, or in any other direction. To develop new computing platforms that integrate charge and spin functionality, it is necessary to study how these spins change direction in response to external stimuli such as electrical current or pulses of light. These changes occur very quickly in about one billionth of one second. This award supports the development of an instrument to study spin reorientation by measuring the spin direction with extremely short pulses of light that arrive at the sample at precisely controlled times relative to external stimuli such as an electrical current or a beam of light. Measurements will be carried out at very low temperatures to isolate and understand the fundamental physical processes. This knowledge will provide the scientific foundation for engineering appropriate materials for application in future computing devices. The work is being coordinated with a new graduate-level course on the materials under investigation and support the training of one postdoctoral researcher and two undergraduate researchers.Spin-based phenomena in topological insulators and magnetic heterostructures have attracted a great deal of attention from the perspective of both fundamental science and device development. However, the underlying physical origin of many of these phenomena remains vague. Moreover, the dynamics of these phenomena, which are critical for device applications, remain poorly understood. This award supports the development of an instrument that will enable ultrafast optical measurements of collective magnetic and charge excitations and spin transfer dynamics at low temperatures and in three-dimensional magnetic fields. The new instrument will allow scientists to answer fundamental scientific questions about quantum materials, magnetic heterostructures, and other "quantum engineered" heterogeneous materials and identify routes to tailor these heterogeneous materials for spintronic, optoelectronic, and quantum device applications. The new instrument will enable the first ultrafast measurements of the dynamics of spin transfer torque. The three dimensional resolution and integrated optical, magnetic, and electrical control will allow scientists to separate, understand, and ultimately control competing processes. The instrument will also provide unprecedented measurement of magnon and plasmon dynamics in topological insulators and heterogeneous materials designed to control the emergence of interfacial phenomena with unique quantum mechanical properties. Successful development of the instrument will enable new interactions between fundamental science, applied science, and device engineering fields. It will enable the breakthroughs required for widespread adoption of "exotic" materials in device technologies. Conceptual aspects of the research enabled by this instrument will be integrated into new graduate and undergraduate courses and science education outreach programs. Members of underrepresented groups will be actively recruited for both the postdoctoral and undergraduate researcher positions supported by the award.
在过去的15年里,科学家和工程师已经意识到,集成逻辑和信息存储功能可以大大提高计算设备的能源效率,并实现新的、更强大的计算模式。用于制造这种装置的有希望的材料包括电流与电子自旋强烈相互作用的那些材料。电子的自旋可以被认为是附着在电子上的一个微小的条形磁铁,磁铁的北极可以向上、向下或任何其他方向。为了开发集成电荷和自旋功能的新计算平台,有必要研究这些自旋如何响应外部刺激(如电流或光脉冲)而改变方向。这些变化在十亿分之一秒内发生得非常快。该奖项支持开发一种仪器,通过使用极短的光脉冲测量自旋方向来研究自旋重定向,这些光脉冲相对于外部刺激(如电流或光束)在精确控制的时间到达样品。测量将在非常低的温度下进行,以分离和理解基本的物理过程。这些知识将为设计适用于未来计算设备的材料提供科学基础。这项工作正在与一个新的研究生课程相协调,该课程涉及正在研究的材料,并支持培养一名博士后研究人员和两名本科生研究人员。拓扑绝缘体和磁性异质结构中的自旋现象从基础科学和器件开发的角度都引起了极大的关注。然而,许多这些现象的基本物理起源仍然模糊不清。此外,这些现象的动力学,这是关键的设备应用程序,仍然知之甚少。该奖项支持开发一种仪器,该仪器将能够在低温和三维磁场中对集体磁和电荷激发以及自旋转移动力学进行超快光学测量。新仪器将使科学家能够回答有关量子材料,磁性异质结构和其他“量子工程”异质材料的基本科学问题,并确定为自旋电子,光电和量子器件应用定制这些异质材料的路线。新仪器将实现自旋转移扭矩动力学的首次超快测量。三维分辨率和集成的光学,磁性和电气控制将使科学家能够分离,理解并最终控制竞争过程。该仪器还将提供拓扑绝缘体和异质材料中磁振子和等离子体动力学的前所未有的测量,旨在控制具有独特量子力学特性的界面现象的出现。该仪器的成功开发将使基础科学,应用科学和设备工程领域之间的新的相互作用。它将实现在设备技术中广泛采用“奇异”材料所需的突破。该工具所支持的研究的概念方面将被纳入新的研究生和本科生课程以及科学教育推广计划。代表性不足的群体的成员将被积极招募的博士后和本科生研究员职位由该奖项支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigation of spin orbit torque driven dynamics in ferromagnetic heterostructures
- DOI:10.1016/j.jmmm.2019.166211
- 发表时间:2019-10
- 期刊:
- 影响因子:2.7
- 作者:Xinran Zhou;Hang Chen;Y. Ou;Tao Wang;Rasoul Barri;Harsha Kannan;J. Xiao;M. Doty
- 通讯作者:Xinran Zhou;Hang Chen;Y. Ou;Tao Wang;Rasoul Barri;Harsha Kannan;J. Xiao;M. Doty
Vector-Resolved Magnetooptic Kerr Effect Measurements of Spin–Orbit Torque
自旋轨道扭矩的矢量分辨磁光克尔效应测量
- DOI:10.1109/tmag.2018.2873129
- 发表时间:2019
- 期刊:
- 影响因子:2.1
- 作者:Celik, Halise;Kannan, Harsha;Wang, Tao;Mellnik, Alex R.;Fan, Xin;Zhou, Xinran;Barri, Rasoul;Ralph, Daniel C.;Doty, Matthew F.;Lorenz, Virginia O.
- 通讯作者:Lorenz, Virginia O.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Doty其他文献
Matthew Doty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Doty', 18)}}的其他基金
S-STEM Collaborative Planning Grant: An accelerated 3+2 pathway to BS and MS degrees in Semiconductor Manufacturing and Quantum Science disciplines
S-STEM 协作规划补助金:获得半导体制造和量子科学学科学士和硕士学位的加速 3 2 途径
- 批准号:
2322670 - 财政年份:2023
- 资助金额:
$ 65.07万 - 项目类别:
Standard Grant
RAISE-TAQS: Inverting the design paradigm: Tunable qubits in hybrid photonic materials as a scalable platform for quantum photonic devices
RAISE-TAQS:反转设计范式:混合光子材料中的可调谐量子位作为量子光子器件的可扩展平台
- 批准号:
1839056 - 财政年份:2018
- 资助金额:
$ 65.07万 - 项目类别:
Standard Grant
OP: Spatial and spectral control of quantum dot single photon emitters for scalable photonic devices
OP:用于可扩展光子器件的量子点单光子发射器的空间和光谱控制
- 批准号:
1609157 - 财政年份:2016
- 资助金额:
$ 65.07万 - 项目类别:
Standard Grant
Collaborative Research: Spin Physics `by design' in quantum dot molecules
合作研究:量子点分子中“设计”的自旋物理
- 批准号:
1505574 - 财政年份:2015
- 资助金额:
$ 65.07万 - 项目类别:
Continuing Grant
Developing a tunable single-spin bit for scalable spin-based optoelectronics
开发用于可扩展的基于自旋的光电子学的可调谐单自旋位
- 批准号:
1101754 - 财政年份:2011
- 资助金额:
$ 65.07万 - 项目类别:
Standard Grant
CAREER: Controllable Coupling of Quantum Dots in Scalable Architectures
职业:可扩展架构中量子点的可控耦合
- 批准号:
0844747 - 财政年份:2009
- 资助金额:
$ 65.07万 - 项目类别:
Continuing Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Equipment: MRI: Track 2 Acquisition of an Automated High-Throughput System for Combinatorial Design and Development of Complex Polymer Systems
设备: MRI:轨道 2 获取用于复杂聚合物系统的组合设计和开发的自动化高通量系统
- 批准号:
2320276 - 财政年份:2023
- 资助金额:
$ 65.07万 - 项目类别:
Standard Grant
Development of multinuclear MRI for image guided therapy of glioma patients
开发用于神经胶质瘤患者图像引导治疗的多核 MRI
- 批准号:
10655918 - 财政年份:2023
- 资助金额:
$ 65.07万 - 项目类别:
MRI: Track 1 Development of a Combined Optical and Magnetic Resonance Spectroscopy System
MRI:光学和磁共振组合光谱系统的轨道 1 开发
- 批准号:
2320520 - 财政年份:2023
- 资助金额:
$ 65.07万 - 项目类别:
Standard Grant
Development and Evaluation of Advanced Non-Contrast Perfusion MRI for Monitoring Treatment Response in Brain Metastases
用于监测脑转移治疗反应的先进非对比灌注 MRI 的开发和评估
- 批准号:
10716949 - 财政年份:2023
- 资助金额:
$ 65.07万 - 项目类别:
The development of MRI-based non-invasive biomarkers to investigate the effect of vascular risk factors on the glymphatic system
开发基于 MRI 的非侵入性生物标志物来研究血管危险因素对类淋巴系统的影响
- 批准号:
23K14927 - 财政年份:2023
- 资助金额:
$ 65.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Equipment: MRI: Track 1 Development of CODAS: A System for Concurrent and Multi-Technique Observations of Time-Sensitive Stellar Astrophysics
设备: MRI:CODAS 的轨道 1 开发:对时间敏感的恒星天体物理进行并行和多技术观测的系统
- 批准号:
2320626 - 财政年份:2023
- 资助金额:
$ 65.07万 - 项目类别:
Standard Grant
Predicting psychosis risk in youth using a novel structural neuroimaging score that measures deviation from normative development. Can we bring it to communities using portable, low-field MRI?
使用一种新颖的结构神经影像评分来预测青少年的精神病风险,该评分可测量偏离规范发展的情况。
- 批准号:
10435204 - 财政年份:2022
- 资助金额:
$ 65.07万 - 项目类别:
MRI: Development of a frequency agile multistatic radio system for geospace imaging
MRI:开发用于地球空间成像的频率捷变多基地无线电系统
- 批准号:
2215567 - 财政年份:2022
- 资助金额:
$ 65.07万 - 项目类别:
Standard Grant
MRI: Development of A New High Temperature Source Metalorganic Chemical Vapor Deposition System (HTS-MOCVD) for Next Generation IIIA/B-Nitrides
MRI:开发用于下一代 IIIA/B 氮化物的新型高温源金属有机化学气相沉积系统 (HTS-MOCVD)
- 批准号:
2216107 - 财政年份:2022
- 资助金额:
$ 65.07万 - 项目类别:
Standard Grant
Development of quality control phantom for PET / MRI system of safety test guidelines
PET/MRI系统质量控制体模开发安全测试指南
- 批准号:
22H03986 - 财政年份:2022
- 资助金额:
$ 65.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)