Problems in Mean Curvature Flow and Minimal Surface Theory

平均曲率流和极小曲面理论中的问题

基本信息

  • 批准号:
    1609340
  • 负责人:
  • 金额:
    $ 19.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

This research project studies two important geometric objects: minimal surfaces and mean curvature flows. A minimal surface mathematically models the shape of a soap film; the energy of such a film is proportional to its surface area, and so stable configurations are those with least area, that is, minimal surfaces. The theory of minimal surfaces directly connects to problems arising in physics, chemistry, biology, and materials science. More broadly, minimal surfaces are an important model for many geometric variational problems -- that is, problems where one seeks to find and study the properties of geometric objects that are optimal in some sense. In addition to being a fundamental principle in the physical sciences, variational problems arise in diverse areas of pure and applied mathematics. In contrast to minimal surfaces, which are static, the mean curvature flow is a dynamic process. Roughly speaking, mean curvature flow continuously deforms a surface in a manner that decreases area as quickly as possible. It was first studied as a model of certain phenomena in materials science and has also found applications in computer graphics and image recognition. Furthermore, it is closely related to the Ricci flow that was employed in the solution of the Poincaré conjecture. As such, the mean curvature flow has promising potential applications to topology, several of which are explored by this project. This project will use the mean curvature flow to investigate hypersurfaces in n-dimensional Euclidean space of low entropy, that is, hypersurfaces for which a natural measure of geometric complexity, the entropy, is small. It also studies properties of minimal surfaces in Euclidean three-space using a variety of techniques. The first goal is to better understand properties, especially topological ones, of hypersurfaces of low entropy. This requires the investigation of the structure of non-compact self-similar (both shrinking and expanding) solutions to the mean curvature flow. The overarching objective is to see if hypersurfaces of low entropy in Euclidean four-space must smoothly bound a closed ball. This question is closely related to the smooth four-dimensional Schoenflies conjecture, an important open problem in low-dimensional topology. The project also studies several problems connected to the theory of minimal surfaces. Chief among these is the question raised by Calabi, refined by Yau, and partially answered by Colding-Minicozzi, asking whether a complete, embedded minimal surface is properly embedded. In addition, the project explores the relationship between ideas in projective differential geometry and minimal surface theory. This includes studying an analog of the Korteweg-de Vries equation and investigating free-boundary minimal surfaces in the ball.
本研究计画研究两个重要的几何对象:极小曲面与平均曲率流。最小表面在数学上模拟了肥皂膜的形状;这种膜的能量与其表面积成正比,因此稳定的构型是那些面积最小的构型,即最小表面。极小曲面理论直接与物理学、化学、生物学和材料科学中出现的问题有关。更广泛地说,极小曲面是许多几何变分问题的重要模型-也就是说,人们试图找到和研究在某种意义上最优的几何对象的属性的问题。变分问题除了是物理科学中的一个基本原理外,还出现在纯数学和应用数学的各个领域。与静态的极小曲面不同,平均曲率流是一个动态过程。粗略地说,平均曲率流以尽可能快地减小面积的方式连续地使表面变形。它最初是作为材料科学中某些现象的模型进行研究的,并且在计算机图形学和图像识别中也有应用。此外,它与解决庞加莱猜想的里奇流密切相关。因此,平均曲率流在拓扑学中有着很好的应用前景,本项目对其中的几个应用进行了探索。本项目将使用平均曲率流来研究n维低熵欧氏空间中的超曲面,即几何复杂性的自然度量(熵)很小的超曲面。它还研究了性质的极小曲面在欧几里德三空间使用各种技术。第一个目标是更好地理解低熵超曲面的性质,特别是拓扑性质。这就需要研究平均曲率流的非紧自相似(收缩和膨胀)解的结构。首要的目标是看看在欧氏四维空间中的低熵超曲面是否必须光滑地约束一个闭球。这个问题与光滑四维Schoenflies猜想密切相关,后者是低维拓扑学中一个重要的公开问题。该项目还研究了与极小曲面理论有关的几个问题。其中最主要的是卡拉比提出的问题,由丘改进,部分由Colding-Minicozzi回答,询问一个完整的嵌入式极小曲面是否正确嵌入。此外,该项目还探讨了射影微分几何和最小曲面理论之间的关系。这包括研究类似的Korteweg-de弗里斯方程和调查自由边界极小曲面的球。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jacob Bernstein其他文献

Distortions of the helicoid
  • DOI:
    10.1007/s10711-008-9290-9
  • 发表时间:
    2008-09-24
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Jacob Bernstein;Christine Breiner
  • 通讯作者:
    Christine Breiner
THE LEVEL SET FLOW OF A HYPERSURFACE IN R OF LOW ENTROPY DOES NOT DISCONNECT
低熵R中超曲面的水平集流不会断开
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jacob Bernstein
  • 通讯作者:
    Jacob Bernstein
Existence of monotone Morse flow lines of the expander functional
扩张器泛函单调莫尔斯流线的存在性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jacob Bernstein;Letian Chen;Lu Wang
  • 通讯作者:
    Lu Wang
Li-Yau Conformal Volume and Colding-Minicozzi Entropy of Self-Shrinkers
自收缩器的 Li-Yau 保角体积和冷-Minicozzi 熵
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jacob Bernstein
  • 通讯作者:
    Jacob Bernstein
Lower Bounds on Density for Topologically Nontrivial Minimal Cones up to Dimension Six
六维以下拓扑非平凡最小锥体的密度下界
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jacob Bernstein;Lu Wang
  • 通讯作者:
    Lu Wang

Jacob Bernstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jacob Bernstein', 18)}}的其他基金

Mean Curvature Flow and Singular Minimal Surfaces
平均曲率流和奇异极小曲面
  • 批准号:
    2203132
  • 财政年份:
    2022
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Standard Grant
Hypersurfaces of Low Entropy and Mean Curvature Flow
低熵和平均曲率流的超曲面
  • 批准号:
    1904674
  • 财政年份:
    2019
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Continuing Grant
Dynamical Properties of Spaces of Minimal Surfaces
最小曲面空间的动力学性质
  • 批准号:
    1307953
  • 财政年份:
    2013
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0902721
  • 财政年份:
    2009
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Fellowship Award

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
  • 批准号:
    23H00085
  • 财政年份:
    2023
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
  • 批准号:
    23K03212
  • 财政年份:
    2023
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric analysis of mean curvature flow with dynamic contact angle structure
动态接触角结构平均曲率流动的几何分析
  • 批准号:
    23K12992
  • 财政年份:
    2023
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Construction of constant mean curvature surfaces via loop groups and Lorentz geometry
通过环群和洛伦兹几何构造恒定平均曲率曲面
  • 批准号:
    23K03081
  • 财政年份:
    2023
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
  • 批准号:
    2306233
  • 财政年份:
    2023
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Continuing Grant
Mean curvature flow of small sections of the tangent bundle
切束小截面的平均曲率流
  • 批准号:
    572922-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 19.05万
  • 项目类别:
    University Undergraduate Student Research Awards
The Morse index, topology and geometry of branched constant mean curvature surfaces.
分支常平均曲率表面的莫尔斯指数、拓扑和几何。
  • 批准号:
    2758306
  • 财政年份:
    2022
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Studentship
Mean Curvature Flow and Singular Minimal Surfaces
平均曲率流和奇异极小曲面
  • 批准号:
    2203132
  • 财政年份:
    2022
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Standard Grant
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
  • 批准号:
    2203218
  • 财政年份:
    2022
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Continuing Grant
Research of submanifolds by using the mean curvature flow and Lie group actions, and its application to theoretical physics
利用平均曲率流和李群作用研究子流形及其在理论物理中的应用
  • 批准号:
    22K03300
  • 财政年份:
    2022
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了