Dynamical Properties of Spaces of Minimal Surfaces

最小曲面空间的动力学性质

基本信息

  • 批准号:
    1307953
  • 负责人:
  • 金额:
    $ 15.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS 1307953, Principal Investigator: Jacob BernsteinThe project will study properties of classical minimal surfaces - that is, surfaces in Euclidean three-space which are critical points for area. The focus will be on understanding global properties of interesting classes of minimal surfaces, e.g., compactness properties. This will be done by studying the geometric structure of elements of the class. This approach is motivated by far-reaching work of Colding and Minicozzi who characterized the structure of embedded minimal disks. Their work has been the basis for much recent progress in the field. The PI will attack these questions primarily by using methods originating in the theory of integrable systems - especially the geometric theory of the Korteweg-de Vries (KdV) equation. Specifically, the PI will develop preliminary work which suggests that many spaces of minimal surfaces possess dynamics which are modeled on the KdV equation. The connection between minimal surfaces and the KdV equation is best understood using language and ideas coming from projective geometry. As such, one over-arching goal of the project is to formalize these observations in the language of projective geometry and to understand the interaction between the dynamics and the geometry of the minimal surfaces. A near-term goal is to apply the techniques developed to spaces of free-boundary minimal surfaces. These are particularly amenable to the methods and so act as good model spaces. Motivated by work of Meeks, Perez and Ros on properly embedded minimal surfaces of genus-zero, a longer-term goal is to blend this perspective with more established methods in order to answer questions about embedded minimal surfaces of finite genus. Chief among these is the question, raised by Colding and Minicozzi, whether a embedded minimal surface of finite genus which is complete is necessarily properly embedded.A minimal surface mathematically models the shape of a soap film spanning a fixed wire frame. This is because, roughly speaking, the "energy" of such a film is given by its surface area and so stable configurations are those with least area - i.e., minimal surfaces. As such, the theory of minimal surfaces directly connects to problems arising in physics, chemistry, biology and materials science. More broadly, minimal surfaces are an important model for many geometric variational problems - that is problems where one seeks to find and study the properties of geometric objects which are optimal in some sense. In addition to being a fundamental principle in the physical sciences, such variational problems arise in diverse areas of pure and applied mathematics. A specific goal of the project is to understand the relationship between minimal surfaces and the KdV equation - an equation important in fluid dynamics. In contrast to minimal surfaces, which are static, the KdV equation models a dynamic physical phenomena, namely the motion of certain one-dimensional water waves. The KdV equation possesses many remarkable mathematical properties and is important in other areas of physics, notably in string theory. The relationship between the KdV equation and the minimal surface equation is poorly understood and any insight the project may shed on this connection should have broad importance both in mathematics and in physics.
AbstractAward:DMS 1307953,主要研究者:Jacob Bernstein该项目将研究经典极小曲面的性质-即欧氏三空间中的曲面,它们是面积的临界点。 重点将是理解有趣的极小曲面类的全局属性,例如,紧性这将通过研究类元素的几何结构来完成。 这种方法的动机是具有深远意义的工作的Colding和Minicozzi谁的特点嵌入最小磁盘的结构。 他们的工作是该领域最近取得的许多进展的基础。 PI将主要通过使用起源于可积系统理论的方法来解决这些问题-特别是Korteweg-de弗里斯(KdV)方程的几何理论。具体来说,PI将开展初步工作,这表明,许多空间的最小曲面具有动态的KdV方程建模。最小曲面和KdV方程之间的联系最好使用来自射影几何的语言和思想来理解。因此,该项目的一个主要目标是用射影几何的语言形式化这些观察,并理解最小曲面的动态和几何之间的相互作用。 一个近期的目标是将开发的技术应用于自由边界极小曲面的空间。这些特别适合于这些方法,因此可以作为良好的模型空间。受到Meeks、Perez和Ros关于零亏格嵌入极小曲面的工作的启发,一个长期目标是将这种观点与更成熟的方法相结合,以回答关于有限亏格嵌入极小曲面的问题。其中最主要的问题是由Colding和Minicozzi提出的,有限亏格的嵌入极小曲面是否一定是完全嵌入的。极小曲面在数学上模拟了跨越固定线框的肥皂膜的形状。这是因为,粗略地说,这种膜的“能量”由其表面积给出,因此稳定的构型是那些具有最小面积的构型,即,最小的表面。因此,极小曲面理论与物理学、化学、生物学和材料科学中出现的问题直接相关。 更广泛地说,极小曲面是许多几何变分问题的重要模型--即人们寻求寻找和研究在某种意义上最优的几何对象属性的问题。 除了作为一个基本原则,在物理科学,这样的变分问题出现在不同领域的纯数学和应用数学。 该项目的一个具体目标是了解最小曲面和KdV方程之间的关系-一个在流体动力学中很重要的方程。 与静态的最小表面相反,KdV方程模拟动态物理现象,即某些一维水波的运动。KdV方程具有许多显著的数学性质,在物理学的其他领域也很重要,特别是在弦理论中。 KdV方程和最小曲面方程之间的关系知之甚少,该项目可能在这方面的任何见解都应该在数学和物理学中具有广泛的重要性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jacob Bernstein其他文献

Distortions of the helicoid
  • DOI:
    10.1007/s10711-008-9290-9
  • 发表时间:
    2008-09-24
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Jacob Bernstein;Christine Breiner
  • 通讯作者:
    Christine Breiner
THE LEVEL SET FLOW OF A HYPERSURFACE IN R OF LOW ENTROPY DOES NOT DISCONNECT
低熵R中超曲面的水平集流不会断开
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jacob Bernstein
  • 通讯作者:
    Jacob Bernstein
Li-Yau Conformal Volume and Colding-Minicozzi Entropy of Self-Shrinkers
自收缩器的 Li-Yau 保角体积和冷-Minicozzi 熵
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jacob Bernstein
  • 通讯作者:
    Jacob Bernstein
Existence of monotone Morse flow lines of the expander functional
扩张器泛函单调莫尔斯流线的存在性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jacob Bernstein;Letian Chen;Lu Wang
  • 通讯作者:
    Lu Wang
Lower Bounds on Density for Topologically Nontrivial Minimal Cones up to Dimension Six
六维以下拓扑非平凡最小锥体的密度下界
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jacob Bernstein;Lu Wang
  • 通讯作者:
    Lu Wang

Jacob Bernstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jacob Bernstein', 18)}}的其他基金

Mean Curvature Flow and Singular Minimal Surfaces
平均曲率流和奇异极小曲面
  • 批准号:
    2203132
  • 财政年份:
    2022
  • 资助金额:
    $ 15.58万
  • 项目类别:
    Standard Grant
Hypersurfaces of Low Entropy and Mean Curvature Flow
低熵和平均曲率流的超曲面
  • 批准号:
    1904674
  • 财政年份:
    2019
  • 资助金额:
    $ 15.58万
  • 项目类别:
    Continuing Grant
Problems in Mean Curvature Flow and Minimal Surface Theory
平均曲率流和极小曲面理论中的问题
  • 批准号:
    1609340
  • 财政年份:
    2016
  • 资助金额:
    $ 15.58万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0902721
  • 财政年份:
    2009
  • 资助金额:
    $ 15.58万
  • 项目类别:
    Fellowship Award

相似海外基金

CAREER: Algebraic, Analytic, and Dynamical Properties of Group Actions on 1-Manifolds and Related Spaces
职业:1-流形和相关空间上群作用的代数、解析和动力学性质
  • 批准号:
    2240136
  • 财政年份:
    2023
  • 资助金额:
    $ 15.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309779
  • 财政年份:
    2023
  • 资助金额:
    $ 15.58万
  • 项目类别:
    Standard Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309780
  • 财政年份:
    2023
  • 资助金额:
    $ 15.58万
  • 项目类别:
    Standard Grant
Lefschetz properties of commutative algebras generated by relative invariants of prehomogeneous vector spaces
由预齐次向量空间的相对不变量生成的交换代数的 Lefschetz 性质
  • 批准号:
    22K03347
  • 财政年份:
    2022
  • 资助金额:
    $ 15.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Physical properties in the bulk and nano spaces for preparing metal-supported porous coordination polymers using supercritical fluid deposition method
超临界流体沉积法制备金属负载多孔配位聚合物的块体和纳米空间物理性质
  • 批准号:
    21H01694
  • 财政年份:
    2021
  • 资助金额:
    $ 15.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Refinement of convergence theorems of nonlinear integrals with applications to the topological properties of function spaces determined by nonlinear integrals
非线性积分收敛定理的细化及其对非线性积分确定的函数空间拓扑性质的应用
  • 批准号:
    20K03695
  • 财政年份:
    2020
  • 资助金额:
    $ 15.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic Processes on Rough Spaces and Geometric Properties of Random Sets
粗糙空间上的随机过程和随机集的几何性质
  • 批准号:
    1951577
  • 财政年份:
    2019
  • 资助金额:
    $ 15.58万
  • 项目类别:
    Continuing Grant
Stochastic Processes on Rough Spaces and Geometric Properties of Random Sets
粗糙空间上的随机过程和随机集的几何性质
  • 批准号:
    1855349
  • 财政年份:
    2019
  • 资助金额:
    $ 15.58万
  • 项目类别:
    Continuing Grant
Design of supercritical fluid deposition processes on the basis of physical properties in the bulk and nano spaces for preparing supported metal catalysts
基于块体和纳米空间物理性质的超临界流体沉积工艺设计用于制备负载型金属催化剂
  • 批准号:
    18K14045
  • 财政年份:
    2018
  • 资助金额:
    $ 15.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combinatorial Properties of Convex Sets and Measures in Euclidean spaces
欧几里得空间中凸集和测度的组合性质
  • 批准号:
    1764237
  • 财政年份:
    2018
  • 资助金额:
    $ 15.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了