Electrically-Induced Nonlinear Optical Processes in Plasmonic Metamaterials

等离激元超材料中的电致非线性光学过程

基本信息

  • 批准号:
    1609567
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-15 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Title: Electrically-Induced Nonlinear Optical Processes in Plasmonic Metamaterials Non-Technical DescriptionThis research project aims to explore the active control of nonlinear optical processes in photonic metamaterials using electrical means. Metamaterials are able to provide unorthodox properties not found in nature through ordered arrangements of artificially structured building blocks, and nonlinear optics is a critical branch of the science of light that facilitates the active manipulation of photons and the generation of new spectral components. The proposed research offers potentially transformative means to achieve dual electrical and optical functionalities for photonic applications by producing engineered photonic metamaterials with electrically enabled nonlinear optical effects. The research effort addresses fundamental questions about the laws of nonlinear optics, and meanwhile offers practical insights into how metamaterials can be utilized for electro-optic applications in both integrated photonics and liquid environments. Successful execution of this project will lead to a fundamentally new paradigm in the design and implementation of metamaterial-based optoelectronic systems for signal processing, biochemical sensing, and optical computing. This research is closely integrated with educational programs at the high school and collegiate levels, and is expected to enhance interdisciplinary thinking in future scientists and engineers through a rich set of educational and outreach activities. The research program will educate and interact with local K-12 school systems that are historically underrepresented, and highlight STEM related career pathways by facilitating interactive activities, demos and workshops with students. Technical DescriptionThe primary focus of this project is to harness the electrically-enabled nonlinear processes in plasmonic devices, and explore the use of metamaterials as self-sufficient electro-optic platforms for nonlinear signal generation, information processing, and optical sensing. Leveraging the optical and electrical functions simultaneously supported by nanostructured metals, this research comprehensively investigates electrically-enabled, nonlinear light-matter interactions that encompass material, component, and system levels. The goal of this project is to resolve the underdevelopment of photonic metamaterials in the electro-optic regime, and advance the state-of-the-art in the design and implementation of functional metamaterials. In this research, the investigator aims to unlock the full potential of plasmonic metamaterials for optoelectronic information technology by exploring metamaterials from an entirely distinct perspective. Instead of their conventional role as artificially structured materials with exotic optical properties, plasmonic metamaterials will be exploited to serve as a complete and generalizable electro-optic platform with intrinsically embedded electrical functions and optical nonlinearity. In particular, effective second-order nonlinear processes will be electrically enabled and actively controlled, thanks to the breaking of inversion symmetry induced by a low-frequency electric field or accumulation of electric charges. Central themes of the research include electrically-induced nonlinear optical generation in photonic metamaterials, and electrically-controlled nonlinear characterization with plasmonics in aqueous systems. The project addresses a grand challenge to push metamaterials beyond the scope of basic scientific research and towards real-world applications, which serve as a concrete step towards the national needs for seamless integration of photonics and electronics.
职务名称:非技术描述本研究项目旨在探索利用电学手段对光子超材料中的非线性光学过程进行主动控制。超材料能够通过人工结构化构建块的有序排列提供自然界中未发现的非正统性质,并且非线性光学是光科学的关键分支,其促进光子的主动操纵和新光谱分量的产生。拟议的研究提供了潜在的变革性手段,通过生产具有电致非线性光学效应的工程光子超材料,实现光子应用的电学和光学双重功能。研究工作解决了有关非线性光学定律的基本问题,同时提供了关于超材料如何在集成光子学和液体环境中用于电光应用的实用见解。该项目的成功执行将为基于超材料的光电子系统的设计和实施带来一个全新的范例,用于信号处理,生化传感和光学计算。这项研究与高中和大学的教育计划紧密结合,预计将通过丰富的教育和推广活动,增强未来科学家和工程师的跨学科思维。该研究计划将教育和互动与当地K-12学校系统是历史上代表性不足,并通过促进互动活动,演示和研讨会与学生突出干相关的职业道路。该项目的主要重点是利用等离子体器件中的电激活非线性过程,并探索使用超材料作为非线性信号产生,信息处理和光学传感的自给自足电光平台。利用纳米结构金属同时支持的光学和电学功能,这项研究全面研究了包括材料,组件和系统水平的电启用,非线性光物质相互作用。本项目的目标是解决电光领域光子超材料的不足,并推进功能超材料设计和实现的最新技术。在这项研究中,研究人员的目标是通过从完全不同的角度探索超材料来释放等离子体超材料在光电信息技术中的全部潜力。等离子体超材料将取代其作为具有奇异光学特性的人工结构材料的传统角色,而被用作具有内在嵌入的电功能和光学非线性的完整且可推广的电光平台。特别是,有效的二阶非线性过程将被电启用和主动控制,这要归功于由低频电场或电荷积累引起的反转对称性的破坏。研究的中心主题包括光子超材料中的电诱导非线性光学产生,以及水溶液系统中等离子体的电控非线性表征。该项目解决了一个巨大的挑战,推动超材料超越基础科研的范围,走向现实世界的应用,这是迈向光子学和电子学无缝集成的国家需求的具体步骤。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wenshan Cai其他文献

Tuning harmonics with excitons
用激子调节谐波
  • DOI:
    10.1038/nnano.2015.92
  • 发表时间:
    2015-04-20
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Sean P. Rodrigues;Wenshan Cai
  • 通讯作者:
    Wenshan Cai
Changes in carbohydrate metabolism and soil microorganisms under the stress of polyamide and polyethylene nanoplastics during rice (emOryza sativa/em L.) growth
聚酰胺和聚乙烯纳米塑料胁迫下水稻(Oryza sativa L.)生长过程中碳水化合物代谢和土壤微生物的变化
  • DOI:
    10.1016/j.scitotenv.2023.169183
  • 发表时间:
    2024-02-20
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Limin Yang;Lili Luo;Wenshan Cai;Zheng Chen;Xiangdong Luo;Yaling Chen
  • 通讯作者:
    Yaling Chen
Stable, high-performance sodium-based plasmonic devices in the near infrared
近红外稳定、高性能钠基等离子体装置
  • DOI:
    10.1038/s41586-020-2306-9
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Yang Wang;Jianyu Yu;Yi-Fei Mao;Ji Chen;Suo Wang;Hua-Zhou Chen;Yi Zhang;Si-Yi Wang;Xinjie Chen;Tao Li;Lin Zhou;Ren-Min Ma;Shining Zhu;Wenshan Cai;Jia Zhu
  • 通讯作者:
    Jia Zhu
The positive effects of dietary inositol on juvenile hybrid grouper (♀<em>Epinephelus fuscoguttatus</em> × ♂ <em>Epinephelus lanceolatu</em>) fed high-lipid diets: Growth performance, intestinal digestive enzymes, tissue morphology, and intestinal microbiota
  • DOI:
    10.1016/j.aqrep.2024.102534
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Biao Li;Simiao Pan;Weibin Huang;Menglong Zhou;Hao Liu;Baiquan Lu;Hengyang Song;Wenshan Cai;Beiping Tan;Yuanzhi Yang;Xiaohui Dong
  • 通讯作者:
    Xiaohui Dong
Plasmonics for extreme light concentration and manipulation
表面等离子体激元用于极端光集中和操控
  • DOI:
    10.1038/nmat2630
  • 发表时间:
    2010-02-19
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Jon A. Schuller;Edward S. Barnard;Wenshan Cai;Young Chul Jun;Justin S. White;Mark L. Brongersma
  • 通讯作者:
    Mark L. Brongersma

Wenshan Cai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wenshan Cai', 18)}}的其他基金

Elucidation of Hot-Electron Transport and Exploitation of Hot-Carrier Plasmonics via Nonlinear Optical Effects
通过非线性光学效应阐明热电子传输和热载流子等离子体的开发
  • 批准号:
    2004749
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

炎性反应中巨噬细胞激活诱导死亡(activation-induced cell death,AICD)的机理研究
  • 批准号:
    30330260
  • 批准年份:
    2003
  • 资助金额:
    105.0 万元
  • 项目类别:
    重点项目

相似海外基金

A Comprehensive Investigation of Nonlinear Shock-Induced Flutter in High-Speed Flows
高速流动中非线性冲击引起的颤振的综合研究
  • 批准号:
    2341192
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Multi-scale models for nonlinear wave-induced atmospheric phenomena
非线性波引起的大气现象的多尺度模型
  • 批准号:
    RGPIN-2018-05296
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale models for nonlinear wave-induced atmospheric phenomena
非线性波引起的大气现象的多尺度模型
  • 批准号:
    RGPIN-2018-05296
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Tackling Motion-Command-Induced Nonlinear Vibration in Manufacturing Machines Using Software Compensation
使用软件补偿解决制造机器中运动命令引起的非线性振动
  • 批准号:
    2054715
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Nonlinear Semiconductor-Metal Phase Transition Induced Frequency Modulation (FM) based Mid-Infrared Detection at Room Temperature
基于非线性半导体-金属相变感应调频 (FM) 的室温中红外检测
  • 批准号:
    2015722
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Multi-scale models for nonlinear wave-induced atmospheric phenomena
非线性波引起的大气现象的多尺度模型
  • 批准号:
    RGPIN-2018-05296
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale models for nonlinear wave-induced atmospheric phenomena
非线性波引起的大气现象的多尺度模型
  • 批准号:
    RGPIN-2018-05296
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
High resolution photoacoustic microscopy for deep tissue imaging by using nonlinear responses induced with third near-infrared light
利用第三近红外光诱导的非线性响应进行深层组织成像的高分辨率光声显微镜
  • 批准号:
    19K22961
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Multi-scale models for nonlinear wave-induced atmospheric phenomena
非线性波引起的大气现象的多尺度模型
  • 批准号:
    RGPIN-2018-05296
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear microwave interactions and induced turbulence in magnetised laboratory plasma
磁化实验室等离子体中的非线性微波相互作用和诱发湍流
  • 批准号:
    1818214
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了