Tackling Motion-Command-Induced Nonlinear Vibration in Manufacturing Machines Using Software Compensation
使用软件补偿解决制造机器中运动命令引起的非线性振动
基本信息
- 批准号:2054715
- 负责人:
- 金额:$ 41.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quality, productivity and cost are three key pillars of manufacturing. To stay competitive in an increasingly global economy, U.S. manufacturers must find ways to improve the quality and productivity of their manufacturing processes while keeping costs low. Manufacturing machines tend to vibrate as they move, due to weaknesses in their mechanical structures. The resultant motion-induced vibration adversely affects the accuracy and speed of the machines, thus degrading the quality and productivity of the associated manufacturing processes. Software solutions that involve generating motion commands to avoid unwanted vibration of the machines are very attractive in practice because they are low cost. However, existing software solutions cannot adequately handle nonlinear vibrations which are prevalent in manufacturing machines like 5-axis machine tools, delta 3D printers, and robots. This award supports a scientific investigation into a software-based vibration mitigation approach that shows great promise to overcome the technical shortcomings of existing software solutions. Knowledge created through this investigation will enable industry to boost the speed and accuracy of manufacturing machines at low cost, thus increasing their competitiveness in the global marketplace. The objective of this project is to mathematically and experimentally characterize the effectiveness of optimal filtered basis functions, formulated using physics-based and data-driven linear models of nonlinearity, as a means to mitigate motion-command-induced nonlinear vibration in manufacturing machines. Three classes of nonlinearities found in manufacturing machines will be addressed. Structured nonlinearities, where nonlinear dynamics are described by first-principle equations will be tackled by designing optimal basis functions that utilize the known structure of the nonlinearities for vibration compensation. Unstructured nonlinearities, where nonlinear dynamics are described as uncertainties will be addressed by designing basis functions that are optimized for robust vibration compensation. Lastly, unknown or unmodeled nonlinearities will be addressed using a data-driven approach where vibration measured online from manufacturing machines will be used to build machine learning models to compensate vibration. The theoretical understanding and methods developed through this research will be validated experimentally on various vibration-prone manufacturing machines with nonlinearities, including a precision motion stage, a delta 3D printer, and a collaborative robot. Broader impacts of this project will be realized by: (i) cooperating with U.S.-based companies to translate the new methods to industry; (ii) educating industry and the broader public about software based vibration mitigation methods through tutorials and open-access publications; and (iii) K-12 outreach to motivate underrepresented minority students to enter STEM fields by demonstrating the benefits of software-based vibration mitigation techniques on desktop 3D printers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
质量、生产力和成本是制造业的三大支柱。为了在日益全球化的经济中保持竞争力,美国制造商必须找到提高制造过程质量和生产力的方法,同时保持低成本。由于机械结构的弱点,制造机器在移动时往往会振动。由此产生的运动引起的振动会对机器的精度和速度产生不利影响,从而降低相关制造工艺的质量和生产力。涉及生成运动命令以避免机器的不必要振动的软件解决方案在实践中非常有吸引力,因为它们成本低。然而,现有的软件解决方案无法充分处理非线性振动,这些振动在5轴机床、三角洲3D打印机和机器人等制造机器中普遍存在。该奖项支持对基于软件的减振方法进行科学研究,该方法有望克服现有软件解决方案的技术缺陷。通过这项调查创造的知识将使工业能够以低成本提高制造机器的速度和精度,从而提高其在全球市场上的竞争力。该项目的目标是从数学和实验上表征最佳滤波基函数的有效性,使用基于物理和数据驱动的非线性模型制定,作为减轻制造机器中运动命令引起的非线性振动的一种手段。三个类的非线性发现在制造机器将得到解决。结构化的非线性,其中非线性动力学描述的第一原理方程将通过设计最佳的基础函数,利用已知的结构的非线性振动补偿。非结构非线性,非线性动力学描述为不确定性将通过设计基础函数,优化鲁棒振动补偿。最后,未知或未建模的非线性将使用数据驱动的方法来解决,其中从制造机器在线测量的振动将用于构建机器学习模型以补偿振动。通过本研究开发的理论理解和方法将在各种具有非线性的易振动制造机器上进行实验验证,包括精密运动平台,delta 3D打印机和协作机器人。该项目的更广泛影响将通过以下方式实现:(一)与美国合作-(ii)通过教程和开放获取的出版物,教育行业和更广泛的公众了解基于软件的振动缓解方法;和(iii)K-12外展,通过展示软件的好处,激励代表性不足的少数民族学生进入STEM领域-该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的评估来支持。影响审查标准。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Generalized and Efficient Control-Oriented Modeling Approach for Vibration-Prone Delta 3D Printers Using Receptance Coupling
- DOI:10.1109/tase.2022.3197057
- 发表时间:2023-07
- 期刊:
- 影响因子:5.6
- 作者:Nosakhare Edoimioya;C. Okwudire
- 通讯作者:Nosakhare Edoimioya;C. Okwudire
An Efficient Control-oriented Modeling Approach for Vibration-prone Delta 3D printers using Receptance Coupling
使用接收耦合为易振动 Delta 3D 打印机提供高效的面向控制的建模方法
- DOI:10.1109/case49439.2021.9551537
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Edoimioya, Nosakhare;Okwudire, Chinedum E.
- 通讯作者:Okwudire, Chinedum E.
Vibration compensation of delta 3D printer with position-varying dynamics using filtered B-splines
- DOI:10.1007/s00170-022-10789-w
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Nosakhare Edoimioya;Cheng-Hao Chou;C. Okwudire
- 通讯作者:Nosakhare Edoimioya;Cheng-Hao Chou;C. Okwudire
A Hybrid Filtered Basis Functions Approach for Tracking Control of Linear Systems with Unmodeled Nonlinear Dynamics
具有未建模非线性动力学的线性系统跟踪控制的混合滤波基函数方法
- DOI:10.1109/case49439.2021.9551476
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Chou, Cheng-Hao;Duan, Molong;Okwudire, Chinedum E.
- 通讯作者:Okwudire, Chinedum E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chinedum Okwudire其他文献
Comparative LCA of a Linear Motor and Hybrid Feed Drive under High Cutting Loads
- DOI:
10.1016/j.procir.2014.03.055 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:
- 作者:
Siddharth Kale;Nattasit Dancholvichit;Chinedum Okwudire - 通讯作者:
Chinedum Okwudire
Chinedum Okwudire的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chinedum Okwudire', 18)}}的其他基金
CPS: Small: Mitigating Uncertainties in Computer Numerical Control (CNC) as a Cloud Service using Data-Driven Transfer Learning
CPS:小型:使用数据驱动的迁移学习减轻计算机数控 (CNC) 作为云服务的不确定性
- 批准号:
1931950 - 财政年份:2019
- 资助金额:
$ 41.53万 - 项目类别:
Standard Grant
Collaborative Research: Towards a Fundamental Understanding of a Simple, Effective and Robust Approach for Mitigating Friction in Nanopositioning Stages
合作研究:从根本上理解一种简单、有效和稳健的减轻纳米定位阶段摩擦的方法
- 批准号:
1855354 - 财政年份:2019
- 资助金额:
$ 41.53万 - 项目类别:
Standard Grant
Boosting the Speed and Accuracy of Vibration-Prone Manufacturing Machines at Low Cost through Software
通过软件以低成本提高易振动制造机器的速度和精度
- 批准号:
1825133 - 财政年份:2018
- 资助金额:
$ 41.53万 - 项目类别:
Standard Grant
Vibration Assisted Nanopositioning: An Enabler of Low-cost, High-throughput Nanotech Processes
振动辅助纳米定位:低成本、高通量纳米技术工艺的推动者
- 批准号:
1562297 - 财政年份:2016
- 资助金额:
$ 41.53万 - 项目类别:
Standard Grant
CAREER: Dynamically Adaptive Feed Drive Systems for Smart and Sustainable Manufacturing
职业:用于智能和可持续制造的动态自适应进给驱动系统
- 批准号:
1350202 - 财政年份:2014
- 资助金额:
$ 41.53万 - 项目类别:
Standard Grant
Low-Cost and Energy-Efficient Vibration Reduction in Ultra-Precision Manufacturing Machines using Mode Coupling
使用模式耦合在超精密制造机器中实现低成本且节能的减振
- 批准号:
1232915 - 财政年份:2012
- 资助金额:
$ 41.53万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 41.53万 - 项目类别:
Standard Grant
Motion Sense-free Cabin:自動走行時の快適性向上を目的とした搭乗者の移動感覚制御
无体感驾驶室:控制乘客运动感觉,提高自动驾驶舒适度
- 批准号:
24K02978 - 财政年份:2024
- 资助金额:
$ 41.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: A Task-Invariant Customization Framework for Lower-Limb Exoskeletons to Assist Volitional Human Motion
职业生涯:用于辅助人类意志运动的下肢外骨骼的任务不变定制框架
- 批准号:
2340261 - 财政年份:2024
- 资助金额:
$ 41.53万 - 项目类别:
Standard Grant
Vision-only structure-from-motion via acoustic video for extreme underwater environment sensing
通过声学视频进行纯视觉运动结构,用于极端水下环境传感
- 批准号:
24K20867 - 财政年份:2024
- 资助金额:
$ 41.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Motion-Less VRの研究:下肢を対象とした装置の開発と性能の評価
无运动 VR 研究:针对下肢的设备的开发和性能评估
- 批准号:
24K17244 - 财政年份:2024
- 资助金额:
$ 41.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
- 批准号:
2411677 - 财政年份:2024
- 资助金额:
$ 41.53万 - 项目类别:
Continuing Grant
Simplified Intravoxel Incoherent Motionモデルによる非造影足部還流評価法の開発
使用简化的 Intravoxel 不相干运动模型开发非对比足部灌注评估方法
- 批准号:
24K18798 - 财政年份:2024
- 资助金额:
$ 41.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Towards Motion-Robust and Efficient Functional MRI Using Implicit Function Learning
使用内隐功能学习实现运动稳健且高效的功能 MRI
- 批准号:
EP/Y002016/1 - 财政年份:2024
- 资助金额:
$ 41.53万 - 项目类别:
Research Grant
CAREER: Imaging and understanding the motion and interaction of nanoparticles near surfaces
职业:成像并理解表面附近纳米颗粒的运动和相互作用
- 批准号:
2338466 - 财政年份:2024
- 资助金额:
$ 41.53万 - 项目类别:
Continuing Grant
STTR Phase I: ActiveLens: Enabling Stationary Occupancy Detection of Passive Infrared Motion Sensors
STTR 第一阶段:ActiveLens:实现被动红外运动传感器的静止占用检测
- 批准号:
2341560 - 财政年份:2024
- 资助金额:
$ 41.53万 - 项目类别:
Standard Grant