Integrability and Geometry. Participation at XXXV Workshop on Geometric Methods in Physics and its summer school in Poland

可积性和几何。

基本信息

  • 批准号:
    1609812
  • 负责人:
  • 金额:
    $ 4.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-01 至 2017-04-30
  • 项目状态:
    已结题

项目摘要

The XXXV Workshop on Geometric Methods in Physics will take place in Bialowieza, Poland, from June 26 to July 2, 2016, and will be followed by the School on Geometry and Physics, from July 4 to July 9, 2016. The goal of this project is to increase the attendance of US-based researchers, particularly early-career faculty, postdocs, graduate students, and those without other forms of support. The series of Workshops on Geometric Methods in Physics, which has been organized by the Department of Mathematical Physics of the University of Bialystok, Poland, was created with the mission of bringing together an international community that works on a broad spectrum of problems inspired by physics; areas of special emphasis include harmonic analysis, infinite-dimensional groups, integrable systems, Lie groupoids and Lie algebroids, mathematical aspects of field theory, noncommutative geometry, operator algebras, quantization, symplectic and Poisson geometry. The series has achieved international reputation and was featured in the Newsletters of the European Mathematical society. In 2012, a summer school was added, to follow the workshop and offer nonexperts an in-depth training on selected themes of the meeting, to further promote active research and collaboration. In this 35st edition, there will be a special session on integrable systems.The workshop is expected to promote intense activity and new collaborations in areas of theoretical mathematics that are instrumental to solve problems in physics, and reciprocally have been enriched by them, ranging from algebraic geometry to representations of infinite-dimensional Lie groups to symplectic, Poisson and noncommutative geometry. The special session will focus on the geometric, algebraic and analytic features of completely integrable systems. Plenary speakers in the special session on Integrable systems and Geometry will include E. Previato, C. Roger, L. Takhtajan, and V. Zakharov, representing very different facets of the subject. Discussion on open problems is also planned. The 2016 WGMP will be the occasion for a diverse community of experts and rising experts to come together with significant potential for advancement. Details of speakers and participants, logistic and scientific information can be found on the conference website: http://wgmp.uwb.edu.pl
在物理学几何方法第三十五研讨会将于2016年6月26日至7月2日在波兰的比亚洛维萨举行,随后将由几何和物理学院,从7月4日至7月9日,2016年。该项目的目标是增加美国研究人员的出勤率,特别是早期职业教师,博士后,研究生和那些没有其他形式的支持。波兰比亚韦斯托克大学数学物理系举办的物理学中几何方法系列讲习班的使命是将致力于解决受物理学启发的广泛问题的国际社会聚集在一起;特别强调的领域包括调和分析,无限维群,可积系统,李群胚和李代数胚,数学方面的领域理论,非交换几何,运营商代数,量化,辛和泊松几何。该系列已经取得了国际声誉,并在欧洲数学学会的通讯。2012年,增加了一个暑期学校,在讲习班之后,就会议的选定主题向非专家提供深入培训,以进一步促进积极的研究与合作。在第35版中,将有一个关于可积系统的特别会议。预计该研讨会将促进理论数学领域的激烈活动和新的合作,这些领域有助于解决物理学问题,并丰富了数学知识,从代数几何到无限维李群的表示,再到辛几何,泊松几何和非交换几何。特别会议将集中讨论完全可积系统的几何、代数和分析特征。在关于可积系统和几何学的特别会议上,全体发言人将包括E。普雷维亚托角罗杰湖Takhtajan和V. Zakharov,代表了这个主题的非常不同的方面。还计划讨论未决问题。2016年WGMP将是一个多元化的专家社区和新兴专家聚集在一起的机会,具有巨大的进步潜力。演讲者和与会者的详细信息,后勤和科学信息可以在会议网站上找到:http://wgmp.uwb.edu.pl

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ekaterina Shemyakova其他文献

Darboux transformations for factorable Laplace operators
  • DOI:
    10.1134/s0361768814030062
  • 发表时间:
    2014-05-24
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Ekaterina Shemyakova
  • 通讯作者:
    Ekaterina Shemyakova
Refinement of Two-Factor Factorizations of a Linear Partial Differential Operator of Arbitrary Order and Dimension
  • DOI:
    10.1007/s11786-010-0052-3
  • 发表时间:
    2010-12-15
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Ekaterina Shemyakova
  • 通讯作者:
    Ekaterina Shemyakova
An algorithm for constructing Darboux transformations of type I for third-order hyperbolic operators of two variables
  • DOI:
    10.1134/s0361768816020092
  • 发表时间:
    2016-03-31
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Ekaterina Shemyakova
  • 通讯作者:
    Ekaterina Shemyakova
Laplace transformations as the only degenerate Darboux transformations of first order
  • DOI:
    10.1134/s0361768812020053
  • 发表时间:
    2012-04-04
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Ekaterina Shemyakova
  • 通讯作者:
    Ekaterina Shemyakova
A package to work with linear partial differential operators
  • DOI:
    10.1134/s0361768813040063
  • 发表时间:
    2013-07-26
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Ekaterina Shemyakova
  • 通讯作者:
    Ekaterina Shemyakova

Ekaterina Shemyakova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
  • 批准号:
    2412346
  • 财政年份:
    2024
  • 资助金额:
    $ 4.7万
  • 项目类别:
    Standard Grant
Discrete Geometry and Convexity
离散几何和凸性
  • 批准号:
    2349045
  • 财政年份:
    2024
  • 资助金额:
    $ 4.7万
  • 项目类别:
    Standard Grant
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
  • 批准号:
    2342225
  • 财政年份:
    2024
  • 资助金额:
    $ 4.7万
  • 项目类别:
    Continuing Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    $ 4.7万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 4.7万
  • 项目类别:
    Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 4.7万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 4.7万
  • 项目类别:
    Fellowship Award
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    $ 4.7万
  • 项目类别:
    Standard Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 4.7万
  • 项目类别:
    Continuing Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 4.7万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了