OP: High Power Widely Tunable Fiber Lasers for Nonlinear Optical Microscopy
OP:用于非线性光学显微镜的高功率宽范围可调谐光纤激光器
基本信息
- 批准号:1610048
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Development of high power widely tunable fiber lasers for nonlinear optical microscopy of cancer and brain tissuesNontechnical descriptionThis research program will seek to improve the performance of ultrafast laser sources based on fiber format by extending the operating wavelength to new regions. A successful outcome of this program will allow the development of useful instruments with new capabilities through the use of widely tunable wavelengths, energetic, and ultrashort optical pulses. These instruments will have transformative impact on the biomedical imaging and research community by providing advanced capabilities such as on-demand wavelength tuning, access to difficult spectral regions, synchronized ultrafast laser pulses for pump/probe spectroscopy. From an educational perspective, this research will allow the PI to educate PhD graduates in the fields of Ultrafast Lasers and Fiber Lasers through the established educational programs at the College of Optical Sciences, The University of Arizona. Graduate education will be further improved by incorporating the research results into two graduate courses. In future as in previous summer months, undergraduate students will be involved in research on ultrafast fiber lasers and their applications. The PI will involve students from underrepresented groups (Native Americans, women) in his research through year round mentoring and internships, and by participating in various NSF funded outreach programs such as "Optical Sciences summer Camp", "Hooked on Photonics", "Integrated Optics for Undergraduates", and "Research Experience for Teachers"Technical descriptionThe purpose of this project is to investigate high performance widely tunable synchronously pumped ultrafast fiber optical parametric oscillators exhibiting new pulse evolutions in the cavity. The combination of standard optical gain and parametric interaction in a single laser cavity not only opens route to high output power operation but also gives rise to new dynamics never studied before. The project will address a number of key issues that currently prevent this laser platform from becoming suitable for nonlinear microscopy application. The specific goals of this proposal are: 1) Develop compact and robust ultrafast fiber lasers that can replace expensive and bulky Ti:sapphire femtosecond laser; 2) Generate ultrafast laser wavelengths not currently available commercially (in fiber format) such as 1300 nm and 1700 nm which are important for deep tissue multiphoton imaging; 3) Characterize and test the developed laser sources on real applications including cancer and brain imaging. This project will provide the first systematic study of ultrafast fiber optical parametric oscillators both experimentally and theoretically. The research will enable new high power fiber lasers working at important wavelength gaps that current state-of-the-art fiber laser technology cannot provide. Recently, fiber lasers based on traditional gain media operating in normal dispersion regime with self-similar pulse-shaping have been introduced. This has enabled fiber lasers to achieve high energy, high power, and low noise performance surpassing that of other solid-state lasers based on crystals and free-space optics. We have shown that fiber optical parametric oscillators can be designed to work in self-similar regime. The self-similar evolution opens new routes to create compact and robust optical parametric oscillators with very broad wavelength tuning and high output power level suitable for nonlinear optical microscopy and a range of other applications such as 3D writing, pump/probe spectroscopy, frequency comb metrology.
用于癌症和脑组织非线性光学显微镜的高功率宽可调谐光纤激光器的开发非技术描述本研究计划将通过将工作波长扩展到新的区域来寻求提高基于光纤格式的超快激光源的性能。该计划的成功成果将允许开发具有新功能的有用仪器,通过使用广泛可调的波长,能量和超短光脉冲。这些仪器将对生物医学成像和研究界产生变革性的影响,提供先进的功能,如按需波长调谐,进入困难的光谱区域,同步超快激光脉冲泵/探针光谱。从教育的角度来看,这项研究将使PI能够通过亚利桑那大学光学科学学院的既定教育计划,培养超快激光器和光纤激光器领域的博士毕业生。将研究成果纳入两门研究生课程,进一步完善研究生教育。在未来的夏季,本科生将参与超快光纤激光器及其应用的研究。PI将通过全年指导和实习,以及参加各种NSF资助的外展项目,如“光学科学夏令营”、“迷上光子学”、“本科生集成光学”等,让来自代表性不足群体(印第安人、女性)的学生参与他的研究。和“教师研究经验”技术描述本项目的目的是研究高性能宽可调谐同步泵浦超快光纤参量振荡器在腔内表现出新的脉冲演变。标准光增益和参量相互作用在单一激光腔内的结合不仅为高输出功率工作开辟了道路,而且还产生了以前从未研究过的新动力学。该项目将解决目前阻碍该激光平台成为适合非线性显微镜应用的一些关键问题。本提案的具体目标是:1)开发紧凑且坚固的超快光纤激光器,以取代昂贵且笨重的钛蓝宝石飞秒激光器;2)产生超快激光波长,目前还没有商用(光纤格式),如1300 nm和1700 nm,这对深层组织多光子成像很重要;3)在癌症和脑成像等实际应用中对开发的激光源进行表征和测试。本项目将首次从实验和理论两方面对超快光纤参量振荡器进行系统的研究。这项研究将使新的高功率光纤激光器能够在当前最先进的光纤激光器技术无法提供的重要波长间隙工作。近年来,基于传统增益介质的光纤激光器工作在正常色散区,具有自相似脉冲整形。这使得光纤激光器能够实现高能量、高功率和低噪声的性能,超越其他基于晶体和自由空间光学的固态激光器。我们已经证明,光纤参量振荡器可以设计成工作在自相似状态。自相似的进化开辟了新的途径,以创建紧凑和强大的光学参数振荡器,具有非常宽的波长调谐和高输出功率水平,适用于非线性光学显微镜和一系列其他应用,如3D书写,泵/探针光谱,频率梳计量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khanh Kieu其他文献
High Power Soliton Self-Frequency Shift With Improved Flatness Ranging From 1.6 to 1.78 μm
- DOI:
10.1109/lpt.2013.2279239 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:2.6
- 作者:
Thanh Nam Nguyen;Khanh Kieu;Peyghambarian, Nasser - 通讯作者:
Peyghambarian, Nasser
Characterization of multiphoton microscopes by the nonlinear knife-edge technique
- DOI:
10.1364/ao.391881 - 发表时间:
2020-08-01 - 期刊:
- 影响因子:1.9
- 作者:
Mehravar, Soroush;Cromey, Benjamin;Khanh Kieu - 通讯作者:
Khanh Kieu
All-fiber high-power 1700 nm femtosecond laser based on optical parametric chirped-pulse amplification
- DOI:
10.1364/oe.384185 - 发表时间:
2020-01-20 - 期刊:
- 影响因子:3.8
- 作者:
Qin, Yukun;Batjargal, Orkhongua;Khanh Kieu - 通讯作者:
Khanh Kieu
Design of a 1.0mm multiphoton microscopy microendoscope
1.0mm多光子显微内窥镜的设计
- DOI:
10.1117/12.3001732 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zuzana Adams;Zhihan Hong;Lynette K. Valenzuela;Piaoran Ye;Rongguang Liang;Khanh Kieu;Jennifer K. Barton - 通讯作者:
Jennifer K. Barton
Khanh Kieu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khanh Kieu', 18)}}的其他基金
OP: Collaborative Research: Multimodal Molecular Spectroscopy and Imaging in Biological Tissue and Historical Artwork
OP:合作研究:生物组织和历史艺术品中的多模态分子光谱和成像
- 批准号:
1609983 - 财政年份:2016
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Generation and Manipulation of New Sources in 20-60 micron on a Chip
合作研究:EAGER:在芯片上生成和操纵 20-60 微米的新光源
- 批准号:
1644659 - 财政年份:2016
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
相似国自然基金
基于切平面受限Power图的快速重新网格化方法
- 批准号:62372152
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多约束Power图快速计算算法研究
- 批准号:61972128
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
网格曲面上质心Power图的快速计算及应用
- 批准号:61772016
- 批准年份:2017
- 资助金额:46.0 万元
- 项目类别:面上项目
离散最优传输问题,闵可夫斯基问题和蒙奇-安培方程中的变分原理和Power图
- 批准号:11371220
- 批准年份:2013
- 资助金额:50.0 万元
- 项目类别:面上项目
云计算环境下数据中心的power capping关键问题研究
- 批准号:61272460
- 批准年份:2012
- 资助金额:81.0 万元
- 项目类别:面上项目
基于信道Time/Power度量指标的TOA测距误差模型及其应用研究
- 批准号:61172049
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
Power MEMS 微转子-轴承系统的非线性动力学研究
- 批准号:10872031
- 批准年份:2008
- 资助金额:36.0 万元
- 项目类别:面上项目
准气体动力循环超高能量密度Power MEMS的研究
- 批准号:50575231
- 批准年份:2005
- 资助金额:28.0 万元
- 项目类别:面上项目
冷热源Power MEMS应用基础研究
- 批准号:50275135
- 批准年份:2002
- 资助金额:31.0 万元
- 项目类别:面上项目
相似海外基金
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 32万 - 项目类别:
Studentship
Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
- 批准号:
MR/Y011686/1 - 财政年份:2025
- 资助金额:
$ 32万 - 项目类别:
Fellowship
High-power Ytterbium femtosecond laser amplifier system
高功率镱飞秒激光放大器系统
- 批准号:
532577495 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Major Research Instrumentation
FABB-HVDC (Future Aerospace power conversion Building Blocks for High Voltage DC electrical power systems)
FABB-HVDC(高压直流电力系统的未来航空航天电力转换构建模块)
- 批准号:
10079892 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Legacy Department of Trade & Industry
Project GANESHA - Getting power Access to rural-Nepal through thermally cooled battery Energy storage for transport and Home Applications
GANESHA 项目 - 通过热冷却电池为尼泊尔农村地区提供电力 用于运输和家庭应用的储能
- 批准号:
10085992 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Collaborative R&D
Harnessing the power of ordinary people to prevent cyber abuse
利用普通人的力量来防止网络滥用
- 批准号:
DE240100080 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Discovery Early Career Researcher Award
Digital Hydraulic Fluid Power Technologies for Decarbonising Off-road Vehicles
用于越野车脱碳的数字液压流体动力技术
- 批准号:
MR/X034887/1 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Fellowship
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
- 批准号:
MR/S034420/2 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Fellowship
Harnessing the Power of Diels-Alderases in Sustainable Chemoenzymatic Synthesis
利用 Diels-Alderases 进行可持续化学酶合成
- 批准号:
BB/Y000846/1 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Research Grant
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
- 批准号:
EP/X025381/1 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Research Grant