A Semi-Analytical Framework for Faster Deterministic and Stochastic Power System Simulations

用于更快确定性和随机电力系统仿真的半分析框架

基本信息

  • 批准号:
    1610025
  • 负责人:
  • 金额:
    $ 30.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-15 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

With the increasing penetration of intermittent and renewable resources, electric utilities are facing new challenges in computer simulation of interconnected power systems. These challenges include (1) how to handle the fast growing dimensionality and nonlinearity in mathematical models of power grids, and (2) how to deal with increasing uncertainties in daily grid operations. The increasing uncertainties stem from the varying and unpredictable nature of renewable energy sources such as solar and wind, and even from inaccuracy in the mathematical models of renewable sources. The so-called "faster-than-real-time simulation" of a power grid is expected to start as soon as a disturbance is detected and to conclude even before the impact ends so as to improve real-time situational awareness and decision support capability of the grid operator against major power outages and enable real-time stability assessment and control. However, the traditional numerical integration based simulation approach has little power to improve time performance for real-time implementation due to its mechanism of iterative computations. Stochastic simulations are becoming more important for power grids with a high penetration of renewables but have not been executed well using the traditional simulation approach. This project will explore a completely new direction to achieve faster power grid simulation in both deterministic and stochastic approaches. The proposed semi-analytical framework is a better fit for faster-than-real-time simulation on parallel computers and also for stochastic power system simulations involving renewable sources. Success of the project may inspire software vendors to apply this new semi-analytical methodology leading to faster power grid simulation tools to help reduce the risk of the power grid to blackouts. This new methodology for power grid simulation can be generalized for fast simulation of other large-scale nonlinear dynamic systems. Unlike the traditional simulation approach solving power grid nonlinear differential-algebraic equations by numerical integration and iteration, this new approach decomposes the solution process into tasks in two basic stages: the offline stage uses the Adomian decomposition method to derive an approximate, analytical solution called a "semi-analytical solution" (SAS) for each state variable, which is valid for a certain time interval and has symbolic variables such as the time, other state variables and parameters on the system condition; the online stage evaluates the analytical expression of each SAS by plugging in values of its symbolic variables for consecutive intervals until achieving the desired period of simulation, so the simulation result can be given in an extremely fast manner without any numerical integration or iteration. The project will take four steps to establish this semi-analytical methodology and its theoretical framework: (1) developing a systematic procedure to derive SASs for realistic power grid models; (2) studying the maximum potential of this new approach in fast deterministic and stochastic simulations; (3) implementing and testing this approach on a high-performance supercomputer; and (4) incorporating the approach with the traditional numerical approach into a hybrid approach under the recently studied "Parareal in Time" framework to explore the biggest potential in faster-than-real-time simulation for interconnected power systems.
随着间歇性和可再生能源的日益普及,电力公司在互联电力系统的计算机仿真方面面临着新的挑战。这些挑战包括(1)如何处理电网数学模型中快速增长的维数和非线性,以及(2)如何处理日常电网运行中日益增加的不确定性。越来越多的不确定性源于太阳能和风能等可再生能源的变化和不可预测性,甚至源于可再生能源数学模型的不准确性。所谓的电网“超实时仿真”预期在检测到扰动后立即开始,甚至在影响结束前结束,以提高电网运营商应对重大停电的实时态势感知和决策支持能力,并实现实时稳定评估和控制。然而,传统的基于数值积分的仿真方法由于其迭代计算的机制,对于实时实现的时间性能改善不大。随机模拟对于可再生能源渗透率高的电网变得越来越重要,但使用传统的模拟方法并没有很好地执行。该项目将探索一个全新的方向,以实现更快的电网模拟在确定性和随机方法。建议的半解析框架是一个更好的适合快于实时仿真的并行计算机上,也为随机电力系统仿真涉及可再生能源。该项目的成功可能会激励软件供应商应用这种新的半分析方法,从而产生更快的电网模拟工具,以帮助降低电网停电的风险。这种新的电网仿真方法可以推广到其他大规模非线性动态系统的快速仿真。与传统的通过数值积分和迭代求解电网非线性微分代数方程的仿真方法不同,这种新方法将求解过程分解为两个基本阶段的任务:离线阶段使用Adomian分解方法为每个状态变量导出称为“半解析解”(SAS)的近似解析解,其在一定的时间间隔内有效,具有时间、其它状态变量和系统状态参数等符号变量;在线阶段通过插入连续间隔的符号变量的值来评估每个SAS的分析表达式,直到达到期望的周期:仿真,因此可以以极快的方式给出仿真结果,而无需任何数值积分或迭代。该项目将分四个步骤来建立这种半分析方法及其理论框架:(1)开发一个系统的程序来推导真实电网模型的SAS;(2)研究这种新方法在快速确定性和随机模拟中的最大潜力;(3)在高性能超级计算机上实现和测试这种方法;(4)将该方法与传统的数值方法相结合,在最近研究的“Parareal in Time”框架下形成一种混合方法,以探索互联电力系统超实时仿真的最大潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kai Sun其他文献

Enhanced ductility of Ti3AlC2 particles reinforced pure aluminum composites by interface control
通过界面控制增强 Ti3AlC2 颗粒增强纯铝复合材料的延展性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhijun Wang;Yifu Ma;Kai Sun;Qiang Zhang;Chang Zhou;Puzhen Shao;Ziyang Xiu;Gaohui Wu
  • 通讯作者:
    Gaohui Wu
Understanding a Type of Forced Oscillation Caused by Steam-Turbine Governors
了解汽轮机调速器引起的一种受迫振荡
Transitions of deformation to bag breakup and bag to bag-stamen breakup for droplets subjected to a continuous gas flow
对于连续气流作用下的液滴,变形到袋破裂以及袋到袋雄蕊破裂的转变
  • DOI:
    10.1016/j.ijheatmasstransfer.2017.04.012
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Yang;Ming Jia;Zhizhao Che;Kai Sun;Tianyou Wang
  • 通讯作者:
    Tianyou Wang
Flexible silver nanowire/carbon fiber felt metacomposites with weakly negative permittivity behavior
具有弱负介电常数行为的柔性银纳米线/碳纤维毡超复合材料
  • DOI:
    10.1039/c9cp06196g
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Kai Sun;Linying Wang;Zongxiang Wang;Xinfeng Wu;Guohua Fan;Zhongyang Wang;Chuanbing Cheng;Runhua Fan;Mengyao Dong;Zhanhu Guo
  • 通讯作者:
    Zhanhu Guo
Electrostatic Asymmetry of Wurtzite Nanocrystals and Resulting Photocatalytic Properties
纤锌矿纳米晶体的静电不对称性及其光催化性能
  • DOI:
    10.1021/acs.jpcc.1c09021
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Ming Zhou;Ji Young Kim;Myung-Geun Han;Xiaotao Zu;Kai Sun;Sa Zhang;Fengai Zhao;Haiyan Xiao;Xia Xiang;Yimei Zhu;Nicholas A. Kotov
  • 通讯作者:
    Nicholas A. Kotov

Kai Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kai Sun', 18)}}的其他基金

A Semi-Analytical, Heterogeneous Multiscale Method for Simulation of Inverter-Dense Power Grids
一种用于逆变器密集电网仿真的半解析异构多尺度方法
  • 批准号:
    2329924
  • 财政年份:
    2024
  • 资助金额:
    $ 30.39万
  • 项目类别:
    Standard Grant
CAREER: Integrated Research and Education in Nonlinear Modal Decoupling and Control for Resilient Interconnected Power Systems
职业:弹性互联电力系统非线性模态解耦和控制的综合研究和教育
  • 批准号:
    1553863
  • 财政年份:
    2016
  • 资助金额:
    $ 30.39万
  • 项目类别:
    Standard Grant
Unconventional Atomic/Molecular Topological States
非常规原子/分子拓扑态
  • 批准号:
    1402971
  • 财政年份:
    2014
  • 资助金额:
    $ 30.39万
  • 项目类别:
    Continuing Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

An interdisciplinary analytical framework for high-mountain landslides and cascading hazards: implications for communities and infrastructure
高山滑坡和级联灾害的跨学科分析框架:对社区和基础设施的影响
  • 批准号:
    NE/Z503502/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.39万
  • 项目类别:
    Research Grant
MEtaGenome-informed Antimicrobial resistance Surveillance: Harnessing long-read sequencing for an analytical, indicator and risk assessment framework
基于 MEtaGenome 的抗菌药物耐药性监测:利用长读长测序构建分析、指标和风险评估框架
  • 批准号:
    MR/Y034457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.39万
  • 项目类别:
    Research Grant
Development and validation of an empirical analytical framework for regional product ecosystems
区域产品生态系统实证分析框架的开发和验证
  • 批准号:
    23K01415
  • 财政年份:
    2023
  • 资助金额:
    $ 30.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A targeted analytical framework to optimize posthospitalization delirium pharmacotherapy in patients with Alzheimers disease and related dementias
优化阿尔茨海默病和相关痴呆患者出院后谵妄药物治疗的有针对性的分析框架
  • 批准号:
    10634940
  • 财政年份:
    2023
  • 资助金额:
    $ 30.39万
  • 项目类别:
FMRG: Cyber: Cyber-Coordinated Analytical Framework for Multi-stage Distributed Future Manufacturing Systems
FMRG:网络:多阶段分布式未来制造系统的网络协调分析框架
  • 批准号:
    2412020
  • 财政年份:
    2023
  • 资助金额:
    $ 30.39万
  • 项目类别:
    Standard Grant
Development of the analytical framework of human mobility networks
开发人员流动网络分析框架
  • 批准号:
    21H03507
  • 财政年份:
    2021
  • 资助金额:
    $ 30.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Democratic practices and the transformation of citizenship: building a new analytical framework from a comparative study of Japan and Korea
民主实践与公民身份转型:从日韩比较研究构建新的分析框架
  • 批准号:
    21KK0030
  • 财政年份:
    2021
  • 资助金额:
    $ 30.39万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Excellence in Research: Bending the Curve for Vulnerable Populations: A Data-Analytical and Socio-Technical Decision-Making Framework forSheltering in Hurricane-Pandemics
卓越研究:为弱势群体弯曲曲线:飓风大流行期间庇护的数据分析和社会技术决策框架
  • 批准号:
    2101091
  • 财政年份:
    2021
  • 资助金额:
    $ 30.39万
  • 项目类别:
    Standard Grant
FMRG: Cyber: Cyber-Coordinated Analytical Framework for Multi-stage Distributed Future Manufacturing Systems
FMRG:网络:多阶段分布式未来制造系统的网络协调分析框架
  • 批准号:
    2134409
  • 财政年份:
    2021
  • 资助金额:
    $ 30.39万
  • 项目类别:
    Standard Grant
Behavioral economics of interactive sports: Building an analytical framework using table tennis as an example
互动体育的行为经济学:以乒乓球为例构建分析框架
  • 批准号:
    21K18568
  • 财政年份:
    2021
  • 资助金额:
    $ 30.39万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了