A targeted analytical framework to optimize posthospitalization delirium pharmacotherapy in patients with Alzheimers disease and related dementias

优化阿尔茨海默病和相关痴呆患者出院后谵妄药物治疗的有针对性的分析框架

基本信息

  • 批准号:
    10634940
  • 负责人:
  • 金额:
    $ 89.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

Delirium (acute disturbance in mental status) occurs in 46-56% of persons living with dementia (PLWDs) during hospitalization. Alzheimer’s disease and related dementias (ADRD) are among the strongest risk factors for developing delirium during hospitalization. Although an off-label use, antipsychotic medications (APMs) are the most commonly used pharmacotherapy to manage psychological symptoms of delirium. Because PLWDs often have a prolonged recovery course from delirium due to acute illness, ~30% of the patients who newly initiate an APM during hospitalization are discharged with them, and >60% of those discharged with an APM persist for >6 weeks. Since APMs may cause numerous life-threatening adverse reactions, it is critical to discontinue them after hospitalization in a timely fashion. However, several critical knowledge gaps limit the necessary evidence generation to guide such a deprescribing process: 1) There is currently no direct data from randomized control trials (RCT) on discontinuation of APMs used for delirium because it is extremely difficult to recruit and consent PLWDs or their healthcare proxies when the patient is in an acute delirious state to participate in an RCT, and any interventional study would severely underrepresent frail PLWDs seen in routine care. 2) In the non-randomized settings, adjusting for confounding is challenging when comparing different deprescribing strategies of a medication used for acute delirium, and the detailed clinical information required for such analyses is not typically available in routine care data. Our objective is to establish an analytical framework that enables valid causal effect estimation comparing continuation and multiple deprescribing strategies (e.g., abrupt discontinuation vs. gradual dose reduction) of APMs in PLWDs with delirium after hospitalization. We will integrate electronic health records (EHR), national claims data, and multiple clinical assessment data, covering >502,000 PLWDs from 2013 to 2026, and employ high-dimensional machine- learning aided confounding adjustment and phenotyping algorithms. Our specific aims include 1) To integrate EHR with Medicare claims data, Minimum Data Set (MDS), Outcomes and Assessment Information Set (OASIS), and Inpatient Rehabilitation Facility Patient Assessment Instrument (IRF-PAI) and to develop novel algorithms to determine key clinical phenotypes; 2) To assess APM utilization/discontinuation patterns and risk factors of prolonged use of APMs for delirium in PLWDs after hospitalization; 3) To assess the health impact of different discontinuation strategies (considering the amount and rate of dose reduction) of APMs vs. continuing APMs in PLWDs with delirium after hospitalization. The subgroup effects by key clinical phenotypes, typical vs. atypical APMs, and type of admission will also be determined. This proposal will generate evidence reflecting routine care delivery to inform post-discharge APM management in PLWDs with delirium. It will also establish a generalizable analytical framework assessing the health effects of deprescribing pharmacotherapies for delirium with detailed treatment effect heterogeneity evaluation necessary for precision medicine.
46-56%的痴呆患者出现谵妄(急性精神状态紊乱)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOSHUA K LIN其他文献

JOSHUA K LIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOSHUA K LIN', 18)}}的其他基金

Deprescribing antipsychotics in patients with Alzheimers disease and related dementias and behavioral disturbance in skilled nursing facilities
在熟练护理机构中取消阿尔茨海默病及相关痴呆症和行为障碍患者的抗精神病药物处方
  • 批准号:
    10634934
  • 财政年份:
    2023
  • 资助金额:
    $ 89.29万
  • 项目类别:
Effectiveness and Safety of Transcatheter Left Atrial Appendage Occlusion vs. Anticoagulation in Older Adults with Atrial Fibrillation and Alzheimer's Disease and Related dementias
经导管左心耳封堵术与抗凝治疗对患有心房颤动、阿尔茨海默病及相关痴呆症的老年人的有效性和安全性
  • 批准号:
    10672458
  • 财政年份:
    2022
  • 资助金额:
    $ 89.29万
  • 项目类别:
Effectiveness and Safety of Transcatheter Left Atrial Appendage Occlusion vs. Anticoagulation in Older Adults with Atrial Fibrillation and Alzheimer's Disease and Related dementias
经导管左心耳封堵术与抗凝治疗对患有心房颤动、阿尔茨海默病及相关痴呆症的老年人的有效性和安全性
  • 批准号:
    10443345
  • 财政年份:
    2022
  • 资助金额:
    $ 89.29万
  • 项目类别:
Developing scalable algorithms to incorporate unstructured electronic health records for causal inference based on real-world data
开发可扩展的算法以合并非结构化电子健康记录,以基于真实世界数据进行因果推断
  • 批准号:
    10372142
  • 财政年份:
    2020
  • 资助金额:
    $ 89.29万
  • 项目类别:
Developing scalable algorithms to incorporate unstructured electronic health records for causal inference based on real-world data
开发可扩展的算法以合并非结构化电子健康记录,以基于真实世界数据进行因果推断
  • 批准号:
    10581591
  • 财政年份:
    2020
  • 资助金额:
    $ 89.29万
  • 项目类别:
Developing dynamic prognostic and risk-stratification models for informing prescribing decisions in older adults with Coronavirus Disease 2019
开发动态预后和风险分层模型,为患有 2019 年冠状病毒病的老年人的处方决策提供信息
  • 批准号:
    10189838
  • 财政年份:
    2019
  • 资助金额:
    $ 89.29万
  • 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
  • 批准号:
    9983157
  • 财政年份:
    2017
  • 资助金额:
    $ 89.29万
  • 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
  • 批准号:
    9766389
  • 财政年份:
    2017
  • 资助金额:
    $ 89.29万
  • 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
  • 批准号:
    9365420
  • 财政年份:
    2017
  • 资助金额:
    $ 89.29万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了