Exploring how a Conductive Polymer Emerges from its Component Polymer Molecules
探索导电聚合物如何从其聚合物分子中产生
基本信息
- 批准号:1610345
- 负责人:
- 金额:$ 47.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical description: This study examines the electrical properties of flexible, transparent and conductive polymers - materials of tremendous importance to a variety of devices including solar cells and portable displays. Although such polymer films are composed of numerous individual molecules, their optical and electronic properties are extremely different from those of their isolated molecular constituents. The study aims to understand how the properties of these polymeric films emerge from their molecular building blocks. Specifically, it aims to elucidate the role fabrication conditions and interactions between molecules play in the emergence of electronic properties of ordered, crystalline polymer films. To explore this evolution, the project implements optical measurements of single polymer molecules, as well as molecular aggregates of increasing size. In this manner, electronic properties of polymers are examined over increasing scales, ranging from individual molecules through ordered thin films. The research team comprises graduate students and undergraduate researchers from diverse backgrounds. Participants receive training in materials science, chemistry, and photonics. An international collaboration serves to enhance research efforts as well as interdisciplinary training opportunities. In addition, a teaching module on photonic materials is being developed. Technical description: Conjugated polymers (CPs) are technologically important due to their ability to conduct excitons and charge. Most device applications of these materials utilize thin polymeric films. This project entails the use of a recently developed spectroscopic tool to elucidate how thin film electronic behavior emerges from the properties of its individual molecular constituents, as well as from intermolecular interactions. Specifically, studies implement single-molecule spectroscopy to address the nature of polarons - charge carriers in conjugated polymers - whose electronic structure and distribution are critical for ensuring optimal device performance. Experiments encompass spectroscopic studies on a range of length scales, from isolated polymers, through globules and domains, to multi-domain structures. In this manner it is possible to identify the critical length scale over which film-like behavior emerges, and the control parameters influencing the onset of this transition. The study utilizes ultra-high quality-factor optical microresonators as platforms for electronic and polarization spectroscopy, enabling the probing of charged and conducting CPs. Through studies of the interplay of optical properties, electronic structure, and molecular ordering it is possible to construct a detailed model of the electronic properties of photonic organic materials.
非技术描述:这项研究研究了柔性、透明和导电聚合物的电性能——这些材料对包括太阳能电池和便携式显示器在内的各种设备极其重要。 尽管这种聚合物薄膜由许多单独的分子组成,但它们的光学和电子特性与其孤立的分子成分截然不同。该研究旨在了解这些聚合物薄膜的特性如何从其分子构件中显现出来。具体来说,它的目的是阐明制造条件和分子之间的相互作用在有序结晶聚合物薄膜的电子特性的出现中所起的作用。为了探索这种演变,该项目对单个聚合物分子以及尺寸不断增大的分子聚集体进行了光学测量。通过这种方式,可以在从单个分子到有序薄膜的越来越大的范围内检查聚合物的电子特性。研究团队由来自不同背景的研究生和本科生研究人员组成。参与者接受材料科学、化学和光子学方面的培训。国际合作有助于加强研究工作以及跨学科培训机会。此外,正在开发光子材料的教学模块。 技术描述:共轭聚合物(CP)因其传导激子和电荷的能力而在技术上非常重要。这些材料的大多数设备应用都使用聚合物薄膜。该项目需要使用最近开发的光谱工具来阐明薄膜电子行为如何从其单个分子成分的特性以及分子间相互作用中产生。具体来说,研究采用单分子光谱来解决极化子(共轭聚合物中的电荷载流子)的性质,其电子结构和分布对于确保最佳器件性能至关重要。 实验包括一系列长度尺度的光谱研究,从孤立的聚合物到球体和域,再到多域结构。通过这种方式,可以确定出现薄膜状行为的临界长度尺度,以及影响这种转变开始的控制参数。该研究利用超高品质因数光学微谐振器作为电子和偏振光谱的平台,从而能够探测带电和导电的CP。通过研究光学特性、电子结构和分子排序之间的相互作用,可以构建光子有机材料电子特性的详细模型。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Randall Goldsmith其他文献
Randall Goldsmith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Randall Goldsmith', 18)}}的其他基金
Nanophotonic Strategies for Making Molecular Movies of Catalysis
制作催化分子电影的纳米光子策略
- 批准号:
1856518 - 财政年份:2019
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
QLC: EAGER: COLLABORATIVE RESEARCH: Cavity-Enhanced Strategies to Protect and Entangle Quantum Emitters
QLC:EAGER:协作研究:保护和纠缠量子发射器的腔增强策略
- 批准号:
1836482 - 财政年份:2018
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
IDBR: TYPE A; Optical Microresonators as Platforms for Probing Single Metalloproteins in Action
IDBR:A型;
- 批准号:
1556241 - 财政年份:2016
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
CAREER:Single-Molecule Spectroscopy as a Mechanistic Tool for Studying Catalyst Reaction Dynamics
职业:单分子光谱作为研究催化剂反应动力学的机械工具
- 批准号:
1254936 - 财政年份:2013
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
相似海外基金
Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
- 批准号:
2881629 - 财政年份:2027
- 资助金额:
$ 47.5万 - 项目类别:
Studentship
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 47.5万 - 项目类别:
Fellowship
How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
- 批准号:
2594635 - 财政年份:2025
- 资助金额:
$ 47.5万 - 项目类别:
Studentship
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
- 批准号:
2315219 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
- 批准号:
2334517 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant














{{item.name}}会员




