IDBR: TYPE A; Optical Microresonators as Platforms for Probing Single Metalloproteins in Action
IDBR:A型;
基本信息
- 批准号:1556241
- 负责人:
- 金额:$ 65.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An award is made to the University of Wisconsin Madison to enable measurements on individual metal-containing enzymes. The remarkable catalytic activities of enzymes frequently derive from the properties of a metal atom within the enzyme. Typically, studies of how these metalloenzymes function rely on trapping the enzyme in different intermediate states, a process that cannot always reveal the entire enzyme mechanism. Single-molecule measurements, i.e. studies performed on one molecule at a time, are powerful tools for understanding function because they allow one to acquire "molecular movies" of chemical behavior. However, metalloenzymes cannot be examined by state-of-the-art single-molecule techniques, necessitating the development of a new instrument. The use of optical microresonators, devices that confine light to a small microvolume, will enable the measurement of time-resolved behavior and deduce the mechanism of an individual working metalloenzyme. The results of this work will be a new tool capable of providing unique information on a broad range of enzymes critical for biological and industrially relevant chemical transformations. Simultaneously, the educational experience for participating students will be highly multidisciplinary, incorporating elements of photonics, instrumentation, nanofabrication, and bioinorganic chemistry. This project will also include the development of biophotonics teaching modules, participation of undergraduate students under-represented in STEM fields, and undergraduate students at a PUI. This purpose of this project is to develop a spectrometer capable of measuring time-resolved electronic absorption spectra of individual biomolecules. The proposed research will benefit the large scientific community studying metalloenzymes. Enzymes are the biological machines that support nearly all metabolic activity in biological organisms. At the heart of nearly half of these machines is a metal ion that facilitates protein function. These metalloenzymes go through multiple individual kinetic steps in order to carry out their function, including electron transfer events and ligand binding and dissociation. It is of immense mechanistic interest to establish the nature and timescale of these individual events in the enzyme's catalytic cycle. Single-molecule measurements offer the unique ability to construct 'molecular movies' of enzymes performing their natural functions. These measurements are extremely powerful for enabling a greater understanding of how enzymes function since each step can potentially be observed. However, even as modern single-molecule techniques have enabled critical details of many enzymes to be unraveled, current methods for performing measurements on individual molecules fail to provide useful information about the metal site in metalloenzymes, essentially remaining blind to the most important mechanistic details of metalloenzyme mode of operation. This proposal concerns the development of a new technique to allow single-molecule investigation of the active sites of metalloenzymes. Specifically, we will develop optical microresonators as highly sensitive thermometers capable of measuring the heat released from a single photoexcited biomolecule. Once this heat is quantified, one can infer how much light was absorbed, allowing the construction of the electronic absorption spectrum of the active site. This spectrum, which varies as a function of time as the metalloenzyme carries out its function, contains a tremendous amount of information about the changing nature of the metal site, including its redox state and coordination environment. This new technique will open up a substantial fraction of a critical biomolecule class to be probed at the single molecule level, enabling new opportunities for a large community of researchers.
威斯康星州麦迪逊大学获得了一个奖项,以使对单个含金属酶的测量成为可能。酶的显著催化活性常常来源于酶中金属原子的性质。通常,这些金属酶如何发挥作用的研究依赖于将酶捕获在不同的中间状态,这一过程并不总是能够揭示整个酶的机制。 单分子测量,即一次对一个分子进行的研究,是理解功能的强大工具,因为它们允许人们获得化学行为的“分子电影”。然而,金属酶无法通过最先进的单分子技术进行检测,因此需要开发新的仪器。使用光学微谐振器,将光限制在一个小的微体积的设备,将使时间分辨的行为的测量和推导出一个单独的工作金属酶的机制。这项工作的结果将是一种新的工具,能够提供关于生物和工业相关化学转化的广泛酶的独特信息。同时,参与学生的教育经验将是高度多学科的,结合光子学,仪器,纳米纤维和生物无机化学的元素。该项目还将包括生物光子学教学模块的开发,STEM领域代表性不足的本科生的参与,以及PUI的本科生。 本项目的目的是开发一种能够测量单个生物分子的时间分辨电子吸收光谱的光谱仪。拟议的研究将有利于研究金属酶的大型科学界。 酶是支持生物有机体中几乎所有代谢活动的生物机器。这些机器中有近一半的核心是促进蛋白质功能的金属离子。这些金属酶经历多个单独的动力学步骤以执行其功能,包括电子转移事件和配体结合和解离。建立酶催化循环中这些个体事件的性质和时间尺度具有巨大的机理意义。单分子测量提供了构建酶执行其天然功能的“分子电影”的独特能力。这些测量对于更好地理解酶的功能非常强大,因为每个步骤都可以被观察到。然而,即使现代单分子技术已经使许多酶的关键细节被解开,目前用于对单个分子进行测量的方法未能提供有关金属酶中金属位点的有用信息,基本上对金属酶操作模式的最重要的机械细节保持盲目。这一建议涉及一种新技术的发展,允许单分子的金属酶的活性位点的调查。具体来说,我们将开发光学微谐振器作为高灵敏度的温度计,能够测量从单个光激发生物分子释放的热量。一旦这种热量被量化,人们就可以推断吸收了多少光,从而可以构建活性位点的电子吸收光谱。该光谱随着金属酶执行其功能而随时间变化,包含关于金属位点变化性质的大量信息,包括其氧化还原状态和配位环境。这项新技术将在单分子水平上开辟一个关键生物分子类别的大部分,为广大研究人员提供新的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Randall Goldsmith其他文献
Randall Goldsmith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Randall Goldsmith', 18)}}的其他基金
Nanophotonic Strategies for Making Molecular Movies of Catalysis
制作催化分子电影的纳米光子策略
- 批准号:
1856518 - 财政年份:2019
- 资助金额:
$ 65.7万 - 项目类别:
Continuing Grant
QLC: EAGER: COLLABORATIVE RESEARCH: Cavity-Enhanced Strategies to Protect and Entangle Quantum Emitters
QLC:EAGER:协作研究:保护和纠缠量子发射器的腔增强策略
- 批准号:
1836482 - 财政年份:2018
- 资助金额:
$ 65.7万 - 项目类别:
Standard Grant
Exploring how a Conductive Polymer Emerges from its Component Polymer Molecules
探索导电聚合物如何从其聚合物分子中产生
- 批准号:
1610345 - 财政年份:2016
- 资助金额:
$ 65.7万 - 项目类别:
Standard Grant
CAREER:Single-Molecule Spectroscopy as a Mechanistic Tool for Studying Catalyst Reaction Dynamics
职业:单分子光谱作为研究催化剂反应动力学的机械工具
- 批准号:
1254936 - 财政年份:2013
- 资助金额:
$ 65.7万 - 项目类别:
Continuing Grant
相似国自然基金
铋基邻近双金属位点Type B异质结光热催化合成氨机制研究
- 批准号:
- 批准年份:2024
- 资助金额:30.0 万元
- 项目类别:省市级项目
智能型Type-I光敏分子构效设计及其抗耐药性感染研究
- 批准号:22207024
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
TypeⅠR-M系统在碳青霉烯耐药肺炎克雷伯菌流行中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
替加环素耐药基因 tet(A) type 1 变异体在碳青霉烯耐药肺炎克雷伯菌中的流行、进化和传播
- 批准号:LY22H200001
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向手性α-氨基酰胺药物的新型不对称Ugi-type 反应开发
- 批准号:LY22B020003
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
BMP9/BMP type I receptors 通过激活 PPARα保护心肌梗死的机制研究
- 批准号:LQ22H020003
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
C2H2-type锌指蛋白在香菇采后组织软化进程中的作用机制研究
- 批准号:32102053
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管阻断型Type-I光敏剂合成及其三阴性乳腺癌光诊疗
- 批准号:62120106002
- 批准年份:2021
- 资助金额:255 万元
- 项目类别:国际(地区)合作与交流项目
Chichibabin-type偶联反应在构建联氮杂芳烃中的应用
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
茶尺蠖Type-II环氧性信息素合成酶关键基因的鉴定及功能研究
- 批准号:LQ21C140001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Ultrasmall reflection-type optical cell based on metamaterial lens and its application to atomic clock
基于超材料透镜的超小型反射式光学单元及其在原子钟中的应用
- 批准号:
23K17858 - 财政年份:2023
- 资助金额:
$ 65.7万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Cryogenic Ultrafast Scattering-type Terahertz-probe Optical-pump Microscopy (CUSTOM)
低温超快散射型太赫兹探针光泵显微镜(定制)
- 批准号:
EP/T01914X/1 - 财政年份:2020
- 资助金额:
$ 65.7万 - 项目类别:
Research Grant
Representing virtual shadows without dimming mechanism for optical see-through type displays
光学透视型显示器在没有调光机制的情况下呈现虚拟阴影
- 批准号:
19K22882 - 财政年份:2019
- 资助金额:
$ 65.7万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Optical regulation system of mRNA translation with spatiotemporal and cell-type specificity
具有时空和细胞类型特异性的mRNA翻译光学调控系统
- 批准号:
19K20696 - 财政年份:2019
- 资助金额:
$ 65.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Block-type Optical Devices for Educational Materials Which Can Be Used for Practical Optical Systems
开发可用于实用光学系统的教材用块型光学器件
- 批准号:
18K02994 - 财政年份:2018
- 资助金额:
$ 65.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Form measurement of the next-generation optical components by the dimension-conversion-type multi-beam optical angle sensor capable of detecting multiple information
利用可检测多种信息的尺寸转换型多光束光学角度传感器进行下一代光学元件的形状测量
- 批准号:
18H01345 - 财政年份:2018
- 资助金额:
$ 65.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Synthesis of new aeschynite-type complex oxides consisting of titanate and niobate with optical functional properties using green processing
利用绿色工艺合成具有光学功能特性的由钛酸盐和铌酸盐组成的新型七水青石型复合氧化物
- 批准号:
17H03098 - 财政年份:2017
- 资助金额:
$ 65.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Does the Bi-modality of UV-Optical Colors of Normal Type Ia Supernovae change the Accelerating Universe?
正常 Ia 型超新星的紫外光学颜色的双峰性是否会改变加速宇宙?
- 批准号:
1713467 - 财政年份:2017
- 资助金额:
$ 65.7万 - 项目类别:
Continuing Grant
E2CDA: Type II: Collaborative Research: Nanophotonic Lithium Niobate platform for next generation energy efficient and ultrahigh bandwidth optical interconnect
E2CDA:II 类:合作研究:用于下一代节能和超高带宽光学互连的纳米光子铌酸锂平台
- 批准号:
1740291 - 财政年份:2017
- 资助金额:
$ 65.7万 - 项目类别:
Continuing Grant
Development of optical vortex generator based on the polarization adress type spatial light modulation using photo-reactive liquid crystal polymers
基于光反应液晶聚合物偏振地址型空间光调制的光学涡旋发生器的研制
- 批准号:
17K14663 - 财政年份:2017
- 资助金额:
$ 65.7万 - 项目类别:
Grant-in-Aid for Young Scientists (B)