Atomic Layer Lithography for Integrated Optoelectronic Devices with Sub-10-nm Critical Dimensions

用于具有亚 10 纳米临界尺寸的集成光电器件的原子层光刻

基本信息

  • 批准号:
    1610333
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

Nontechnical description: In this project the PI will use an advanced nanofabrication technique called atomic layer lithography to create tiny gaps between metallic electrodes. The gaps can be as small as 1 nanometer across and centimeters long with nearly any geometry, including linear, curved or closed loops. Metallic nanogaps with these dimensions have unique electrical and optical properties. When an AC voltage is applied across the nanogaps, a phenomenon called dielectrophoresis is observed. Dielectrophoresis results in forces that can attract or repel small particles from the gaps. In this way the gaps can be used to trap or sort small biologically-relevant particles for further analysis with optical or electrical techniques. By shrinking the gap between electrodes to nanoscale dimensions, the dielectrophoretic forces can be orders of magnitude larger than with electrodes fabricated with traditional techniques. Additionally, these gaps can be integrated into nanoscale transistors that incorporated 2-dimensional materials like graphene. These nanogaps interact with electromagnetic radiation ranging from visible/infrared light to microwave radiation. The nanogaps strongly amplify optically-generated electromagnetic fields, which can be exploited for sensing interactions between molecules in solution and particles trapped along the gap. By creating nanogaps that can simultaneously trap biological particles and probe them with nanogap-enhanced optical techniques, this project will enable ultra-sensitive chemical analysis. This project also includes educational and outreach components, such as the training of high school, undergraduate and graduate students. The PI also maintains a relationship with the Science Museum of Minnesota and leads an annual activity station during the museum's NanoDays on the impacts of nanotechnology on everyday life. Technical description:The goal of this project is to design, fabricate, and characterize new devices with sub-10-nm electrically controllable metallic gaps that will enable a series of novel optical and electrical experiments. Atomic layer deposition will be utilized as a lithographic patterning method - atomic layer lithography - to produce electrically contacted metallic gaps with atomic-scale thickness resolution. Independent control of the gap thickness and contour shape allows for broadband and precise tuning of the electromagnetic resonance. The integration of electrical interconnects will enable new functionality of the nanogaps and a platform to demonstrate their potential applications. The nanogap devices will be integrated with 2D materials, turning the metal on either side of the gap into source and drain contacts of field-effect transistors and photodetectors. These example experiments will serve to entice experimental experts to utilize atomic layer lithography technique and also use nanogaps as a platform for their research. Intellectual Merit: To date, most researchers rely on electron-beam lithography to create nanogap structures. While suitable for proof-of-concept experiments, these techniques make integration into more complex devices difficult, since they are places where precisely defined geometries and patterns are needed. The intellectual merit of the proposed research is that the PI will transform atomic layer deposition as a top-down patterning method, thereby converting its precise thickness control into lateral patterning resolution without using electron-beam lithography. Electrical interconnects will be integrated to expand the capabilities of the devices. Example experiments in optoelectronics and nanoparticle trapping have the potential to make a large impact on the respective fields. Broader Impacts: If successful, the proposed atomic layer lithography technique will allow researchers the ability to create ultra-long single-digit nanogaps with built-in electrodes Therefore, this proposal has the potential to transform the fields of 2D materials optoelectronics. Graduate and undergraduate students will gain experience in nanofabrication and characterization. For K-12 outreach, the PI's team will build an interactive Activity Station at the Science Museum of Minnesota.
非技术性描述:在这个项目中,PI将使用一种称为原子层光刻的先进纳米纤维技术,在金属电极之间创建微小的间隙。这些间隙可以小到1纳米宽,厘米长,几乎具有任何几何形状,包括线性,弯曲或闭合环。具有这些尺寸的金属纳米间隙具有独特的电学和光学性质。当在纳米间隙上施加AC电压时,观察到称为介电泳的现象。介电电泳导致可以从间隙吸引或排斥小颗粒的力。通过这种方式,间隙可用于捕获或分选小的生物相关颗粒,以用于通过光学或电学技术进行进一步分析。通过将电极之间的差距缩小到纳米尺度,介电泳力可以比用传统技术制造的电极大几个数量级。此外,这些间隙可以集成到纳米级晶体管中,该晶体管包含石墨烯等二维材料。这些纳米间隙与从可见光/红外光到微波辐射的电磁辐射相互作用。纳米间隙强烈放大光学产生的电磁场,可用于传感溶液中的分子与沿着差距捕获的颗粒之间的相互作用。通过创建纳米间隙,可以同时捕获生物颗粒并使用纳米间隙增强光学技术探测它们,该项目将实现超灵敏的化学分析。该项目还包括教育和外联部分,如培训高中生、本科生和研究生。PI还与明尼苏达科学博物馆保持联系,并在博物馆的NanoDays期间领导一个关于纳米技术对日常生活影响的年度活动站。 该项目的目标是设计,制造和表征具有亚10纳米电可控金属间隙的新器件,这将使一系列新颖的光学和电学实验成为可能。原子层沉积将被用作光刻图案化方法-原子层光刻-以产生具有原子尺度厚度分辨率的电接触金属间隙。差距厚度和轮廓形状的独立控制允许电磁谐振的宽带和精确调谐。电互连的集成将使纳米间隙的新功能和平台能够展示其潜在的应用。纳米间隙器件将与2D材料集成,将差距两侧的金属变成场效应晶体管和光电探测器的源极和漏极接触。这些示例实验将吸引实验专家利用原子层光刻技术,并使用纳米间隙作为他们研究的平台。智力优势:迄今为止,大多数研究人员依靠电子束光刻来创建纳米间隙结构。虽然这些技术适用于概念验证实验,但它们很难集成到更复杂的设备中,因为它们需要精确定义的几何形状和图案。拟议研究的智力价值在于,PI将原子层沉积转化为自上而下的图案化方法,从而将其精确的厚度控制转化为横向图案化分辨率,而无需使用电子束光刻。电气互连将被集成以扩展设备的能力。光电子学和纳米粒子捕获的示例实验有可能对各自的领域产生重大影响。更广泛的影响:如果成功,所提出的原子层光刻技术将使研究人员能够创建具有内置电极的超长个位数纳米间隙,因此,该提议有可能改变2D材料光电子学领域。研究生和本科生将获得纳米加工和表征的经验。对于K-12外展,PI的团队将在明尼苏达州科学博物馆建立一个互动活动站。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sang-Hyun Oh其他文献

Atomic layer deposition: A versatile technique for plasmonics and nanobiotechnology
  • DOI:
    10.1557/jmr.2011.434
  • 发表时间:
    2012-02-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Hyungsoon Im;Nathan J. Wittenberg;Nathan C. Lindquist;Sang-Hyun Oh
  • 通讯作者:
    Sang-Hyun Oh
Advances and applications of nanophotonic biosensors
纳米光子生物传感器的进展与应用
  • DOI:
    10.1038/s41565-021-01045-5
  • 发表时间:
    2022-01-17
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Hatice Altug;Sang-Hyun Oh;Stefan A. Maier;Jiří Homola
  • 通讯作者:
    Jiří Homola
A multi-method approach revealing the groundwater-stream water interaction in the Inbuk stream, Korea
  • DOI:
    10.1007/s12303-014-0043-5
  • 发表时间:
    2014-09-24
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Woo-Hyun Jeon;Jin-Yong Lee;Woo-Yeong Cheong;Yeo-Hyun Park;Sang-Hyun Oh;Dong-Hwi Eum;Jae-Yong Park
  • 通讯作者:
    Jae-Yong Park

Sang-Hyun Oh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sang-Hyun Oh', 18)}}的其他基金

Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
  • 批准号:
    2240245
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
  • 批准号:
    2227460
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
OP: Super-Coupling Nanoplasmonics with Silicon Photonics for Mid-Infrared Biosensing
OP:超耦合纳米等离子体与硅光子学用于中红外生物传感
  • 批准号:
    1809240
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Nanomanufacturing and System Integration of Multi-Functional Metallic Pyramidal Probes
多功能金属金字塔探针的纳米制造和系统集成
  • 批准号:
    1363334
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CAREER: IDBR: Ultrasmooth Patterned Metals for Membrane Biology
职业:IDBR:用于膜生物学的超光滑图案金属
  • 批准号:
    1054191
  • 财政年份:
    2011
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Enhanced efficiency in organic photovoltaic cells using engineered plasmonic nanostructures
使用工程等离子体纳米结构提高有机光伏电池的效率
  • 批准号:
    1067681
  • 财政年份:
    2011
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: IDBR: Nanopore optical biosensor development for analyzing membrane protein interactions
合作研究:IDBR:用于分析膜蛋白相互作用的纳米孔光学生物传感器开发
  • 批准号:
    0964216
  • 财政年份:
    2010
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant

相似国自然基金

丘脑POm核团投射信息在第一躯体感觉皮层Layer 5a锥形细胞上的整合机制
  • 批准号:
    31200816
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
S-layer细胞表面展示纳米级屋尘螨融合蛋白免疫治疗的实验研究
  • 批准号:
    30660166
  • 批准年份:
    2006
  • 资助金额:
    23.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
  • 批准号:
    2344156
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
  • 批准号:
    2414424
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
10nm解像・極紫外(EUV)顕微鏡を実現するLayer by layerエッチング波面制御法の開発
开发逐层蚀刻波前控制方法实现10nm分辨率极紫外(EUV)显微镜
  • 批准号:
    24H00434
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Investigating heterojunction-based organic phototransistors and circuits using layer-by-layer coated highly-oriented polymer semiconductors
使用逐层涂覆的高取向聚合物半导体研究基于异质结的有机光电晶体管和电路
  • 批准号:
    24K17743
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Continuing Measurements of Water Vapor, Clouds, Aerosol, and Waves Above, and Across, the Tropical Tropopause Layer with in Situ Instruments on Circum-Tropical Isopycnic Balloons
使用环热带等密度气球上的现场仪器持续测量热带对流层顶层上方和上方的水蒸气、云、气溶胶和波浪
  • 批准号:
    2336110
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Physical layer authentication of IoT devices in the 6G era
6G时代物联网设备物理层认证
  • 批准号:
    24K07482
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Solar Eclipse-Induced Changes in the Ozone Layer Observed with UV/VIS (UltraViolet–VISible Spectroscopy) Radiometer
使用 UV/VIS(紫外可见光谱)辐射计观测日食引起的臭氧层变化
  • 批准号:
    2328210
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Facilities for Atmospheric Boundary Layer Evaluation and Testing
大气边界层评估和测试设施
  • 批准号:
    LE240100116
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
ERI: Molecular-level Characterization of Water-in-Salt Electric Double-Layer Capacitors: Nanoscale Thermal Effects on Differential Capacitance
ERI:盐包水双电层电容器的分子级表征:微分电容的纳米级热效应
  • 批准号:
    2347562
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Development of Reversible Double-Layer Polymer Modification Technology to Break the Safety/Efficacy Trade-Off of Delivering Enzyme
开发可逆双层聚合物改性技术,打破酶递送安全性/有效性的权衡
  • 批准号:
    23K28429
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了