Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
基本信息
- 批准号:2240245
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
One of the main challenges facing the development of next-generation superconducting quantum devices is high-density three-dimensional (3D) integration of large numbers of individual superconducting quantum bits (qubits). While superconducting quantum devices have reached a high level of maturity as a technology, coupling of qubits to one another to enable large-scale circuits for practical computation still remains a challenge. This project seeks to address this challenge by exploring a new approach for coupling superconducting circuits using a thin electromagnetic coupler interposed between qubit layers. The proposed work will be based on an innovative integration of quantum elements that are by themselves well-established in the PI’s and Co-PIs’ labs. Successful performance of the proposed work will expand our knowledge of quantum states in superconducting devices and will result in the development of improved quantum manufacturing approaches of broad interest for practical quantum information processing technologies. The team is committed to mentoring graduate and undergraduate students and to broadening the participation of under-represented groups in quantum engineering. In addition, the PIs will be involved in outreach efforts aiming to raise awareness about physics, materials science, and mathematics to school students. A substantial part of this effort will reach out to school students from the local Native American community. Developing new approaches to 3D integration of superconducting qubits is of crucial relevance for realizing high-depth circuits suitable for running practically relevant algorithms. Current coupling techniques for transmon qubits typically involve relatively large (millimeter-sized) coplanar resonators, while for phase qubits a variety of different capacitive or inductive coupling approaches are being investigated. No optimal solution has yet been identified for vertical expansion. Existing approaches are typically planar, due in part to limitations stemming from the technology used to create the qubit Josephson junctions (JJs) typically angle-deposition and controlled oxidation of the tunnel barrier. This results in low spatial densities for JJ circuits and coherence-limiting cross-talk. In order to address this challenge, the PIs will fabricate high-quality JJ array chips and link them vertically via waveguide arrays operating in the microwave frequencies. While each enabling component and manufacturing method has been demonstrated, their integration is a daunting task with high-risk and the co-PIs are uniquely positioned to tackle this challenge. Intellectual significance: the team’s vision of full-3D integration of JJs and cross-talk shielding is in its early stages and untested experimentally, yet presents a potentially transformative approach to solve, in a single stroke, the triple challenge of efficient superconducting circuit coupling, high-density 3D vertical integration, and cross-talk mitigation. Additionally, the project will train graduate students in state-of-the art quantum device nanofabrication, advanced materials growth, and quantum transport. The PIs will also develop courses on quantum information sciences aimed at undergraduates and quantum engineering/manufacturing aimed at graduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代超导量子器件开发面临的主要挑战之一是大量单个超导量子比特(量子位)的高密度三维集成。虽然超导量子器件作为一种技术已经达到了很高的成熟度,但将量子比特相互耦合以实现用于实际计算的大规模电路仍然是一个挑战。该项目试图通过探索一种新的方法来解决这一挑战,该方法使用在量子比特层之间插入的薄电磁耦合器来耦合超导电路。提议的工作将基于量子元素的创新集成,这些元素本身在PI和co -PI的实验室中已经建立起来。所提出的工作的成功执行将扩展我们对超导器件中量子态的认识,并将导致对实际量子信息处理技术广泛感兴趣的改进的量子制造方法的发展。该团队致力于指导研究生和本科生,并扩大代表性不足群体在量子工程领域的参与。此外,pi将参与旨在提高学生对物理,材料科学和数学的认识的外展工作。这项努力的很大一部分将惠及当地印第安人社区的学生。开发超导量子比特三维集成的新方法对于实现适合运行实际相关算法的高深度电路至关重要。目前用于传输量子比特的耦合技术通常涉及相对较大(毫米大小)的共面谐振器,而用于相位量子比特的各种不同的电容或电感耦合方法正在研究中。目前还没有确定垂直扩展的最佳解决方案。现有的方法通常是平面的,部分原因是用于创建量子比特约瑟夫森结(JJs)的技术(典型的角度沉积和隧道势垒的受控氧化)的局限性。这导致了JJ电路的低空间密度和相干限制串扰。为了应对这一挑战,pi将制造高质量的JJ阵列芯片,并通过在微波频率下工作的波导阵列垂直连接它们。虽然每种使能组件和制造方法都已被证明,但它们的集成是一项艰巨的任务,而且具有高风险,而co- pi具有独特的定位来应对这一挑战。知识意义:该团队对JJs和串扰屏蔽的全3D集成的愿景尚处于早期阶段,尚未经过实验测试,但它提出了一种潜在的变革性方法,可以一次性解决高效超导电路耦合、高密度3D垂直集成和串扰缓解三重挑战。此外,该项目将培养最先进的量子器件纳米制造、先进材料生长和量子输运方面的研究生。pi还将开发针对本科生的量子信息科学课程和针对研究生的量子工程/制造课程。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sang-Hyun Oh其他文献
Atomic layer deposition: A versatile technique for plasmonics and nanobiotechnology
- DOI:
10.1557/jmr.2011.434 - 发表时间:
2012-02-01 - 期刊:
- 影响因子:2.900
- 作者:
Hyungsoon Im;Nathan J. Wittenberg;Nathan C. Lindquist;Sang-Hyun Oh - 通讯作者:
Sang-Hyun Oh
Advances and applications of nanophotonic biosensors
纳米光子生物传感器的进展与应用
- DOI:
10.1038/s41565-021-01045-5 - 发表时间:
2022-01-17 - 期刊:
- 影响因子:34.900
- 作者:
Hatice Altug;Sang-Hyun Oh;Stefan A. Maier;Jiří Homola - 通讯作者:
Jiří Homola
A multi-method approach revealing the groundwater-stream water interaction in the Inbuk stream, Korea
- DOI:
10.1007/s12303-014-0043-5 - 发表时间:
2014-09-24 - 期刊:
- 影响因子:1.500
- 作者:
Woo-Hyun Jeon;Jin-Yong Lee;Woo-Yeong Cheong;Yeo-Hyun Park;Sang-Hyun Oh;Dong-Hwi Eum;Jae-Yong Park - 通讯作者:
Jae-Yong Park
Sang-Hyun Oh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sang-Hyun Oh', 18)}}的其他基金
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:
2227460 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
OP: Super-Coupling Nanoplasmonics with Silicon Photonics for Mid-Infrared Biosensing
OP:超耦合纳米等离子体与硅光子学用于中红外生物传感
- 批准号:
1809240 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Atomic Layer Lithography for Integrated Optoelectronic Devices with Sub-10-nm Critical Dimensions
用于具有亚 10 纳米临界尺寸的集成光电器件的原子层光刻
- 批准号:
1610333 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Nanomanufacturing and System Integration of Multi-Functional Metallic Pyramidal Probes
多功能金属金字塔探针的纳米制造和系统集成
- 批准号:
1363334 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: IDBR: Ultrasmooth Patterned Metals for Membrane Biology
职业:IDBR:用于膜生物学的超光滑图案金属
- 批准号:
1054191 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Enhanced efficiency in organic photovoltaic cells using engineered plasmonic nanostructures
使用工程等离子体纳米结构提高有机光伏电池的效率
- 批准号:
1067681 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: IDBR: Nanopore optical biosensor development for analyzing membrane protein interactions
合作研究:IDBR:用于分析膜蛋白相互作用的纳米孔光学生物传感器开发
- 批准号:
0964216 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
复杂电子产品超精密加工及检测关键技术研究与应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于合成生物学的动物底盘品种优化及中试应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
运用组学整合技术探索萆薢分清散联合化疗治疗晚期胰腺癌的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
九里香等提取物多靶向制剂抗肺癌的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
升血小板方治疗原发免疫性血小板减少症的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
八髎穴微波热疗在女性膀胱过度活动症治疗中的价值研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 miR-455-5p 介导的氧化应激机制探讨糖尿病视网膜病变中医分型治疗的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 UPLC-Q-TOF-MS/MS 分析的 异功散活性成分评价及提取工艺研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
无创电针对于痉挛型双瘫脑 瘫患儿的有效性与安全性研究:一项随机 单盲前瞻性队列研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
弹压式手法与体外冲击波治疗肱骨外上髁炎的对比研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant