OP: Super-Coupling Nanoplasmonics with Silicon Photonics for Mid-Infrared Biosensing
OP:超耦合纳米等离子体与硅光子学用于中红外生物传感
基本信息
- 批准号:1809240
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical: This project aims to develop a miniaturized and integrated optical sensor system to detect biomedical molecules with the potential for point-of-care applications. The sensor measures the molecule's unique optical absorption features of infrared light, with high sensitivity and the capability of identifying them. Moreover, the project will realize a novel structure consisting of metallic optical nanostructures and silicon waveguide, which are efficiently coupled together. The new architecture may also lead to efficient optoelectronic devices for high-speed optical communications that will play an important role in future data centers and 5G wireless network. For education, the project will provide graduate and undergraduate students with experience in nanotechnology and instrumentation. For K-12 outreach, the PIs will build an interactive Activity Station at the Science Museum of Minnesota every year and enhance the public awareness of the benefits of nanotechnology to our society. More women and underrepresented minorities will be given opportunities to experience nanotechnology. Finally, the PIs will continue support for REU and local recruit high school students for summer research experience.Technical: Nanoplasmonics and silicon photonics are two categories of photonic systems with unique features and advantages in the manipulation and detection of light. Integrating the two distinctive systems in a synergistic way can potentially combine their merits and circumvent their weakness, to enable applications ranging from chemical and biological sensing to optoelectronics and optical communications. The realization of such a hybrid integration approach with both efficiency and sensitivity, however, is hindered by the large phase mismatching between the different types of optical modes in the two systems, which leads to low coupling efficiency between them. This program aims to solve the problem and achieve a hybrid platform that efficiently integrates nanoplasmonic resonators and silicon photonic waveguides with an emphasis on operation in the technologically important mid-infrared (mid-IR) band. The phase mismatching challenge is resolved innovatively by utilizing the super-coupling effect brought by the epsilon-near-zero (ENZ) phenomenon in ring-shaped plasmonic coaxial resonators to achieve waveguide-plasmonics coupling efficiency greater than 90%. The hybrid system enables surface-enhanced infrared absorption (SEIRA) sensing, which will be demonstrated with model systems such as lipid bilayer membranes and proteins. There are three-fold intellectual merits of the program. First, the novel physics of super-coupling enabled by the epsilon-near-zero (ENZ) phenomenon is explored and utilized to efficiently couple nanoplasmonic resonators with silicon waveguides. The second intellectual merit lies in the research emphasis in the mid-IR band, which is currently experiencing very fast development and is exceedingly powerful for spectroscopic chemical and biological sensing. The third intellectual merit of the program is to achieve SEIRA biosensing. A new reflection mode detection scheme is investigated that avoids the passage of IR light through the solution and thus largely circumvents water absorption. The anticipated significant improvement in the signal-to-noise ratio would directly lead to enhanced detection sensitivity in SEIRA.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:该项目旨在开发一种小型化和集成的光学传感器系统,以检测具有即时应用潜力的生物医学分子。该传感器测量分子对红外光的独特光吸收特性,具有高灵敏度和识别能力。此外,该项目将实现一种由金属光学纳米结构和硅波导组成的新型结构,它们有效地耦合在一起。新架构还可能导致用于高速光通信的高效光电设备,这些设备将在未来的数据中心和5G无线网络中发挥重要作用。在教育方面,该项目将为研究生和本科生提供纳米技术和仪器方面的经验。在K-12外展方面,PI将每年在明尼苏达科学博物馆建立一个互动活动站,并提高公众对纳米技术对我们社会的好处的认识。更多的妇女和代表性不足的少数民族将有机会体验纳米技术。最后,研究员将继续支持REU和当地招募高中生进行暑期研究经验。技术:纳米等离子体和硅光子学是两类光子系统,在光的操纵和检测方面具有独特的功能和优势。以协同的方式集成这两种独特的系统可以潜在地联合收割机结合它们的优点并克服它们的缺点,以实现从化学和生物传感到光电子学和光通信的应用。然而,实现这种混合集成方法的效率和灵敏度,是由两个系统中的不同类型的光学模式之间的大的相位失配,这导致它们之间的低耦合效率阻碍。该计划旨在解决这个问题,并实现一个混合平台,有效地集成了纳米等离子体共振器和硅光子波导,重点是在技术上重要的中红外(中红外)波段的操作。通过利用环形等离子体同轴谐振器中的ε近零(ENZ)现象所带来的超耦合效应,创新性地解决了相位失配的挑战,以实现大于90%的波导-等离子体耦合效率。该混合系统能够实现表面增强红外吸收(SEIRA)传感,这将与模型系统,如脂质双层膜和蛋白质。该计划有三方面的智力优势。首先,探索并利用由ε近零(ENZ)现象实现的超耦合的新物理来有效地将纳米等离子体激元谐振器与硅波导耦合。第二个智力优势在于中红外波段的研究重点,这是目前正在经历非常快速的发展,是非常强大的光谱化学和生物传感。该计划的第三个智力价值是实现SEIRA生物传感。研究了一种新的反射模式检测方案,该方案避免了IR光通过溶液的通道,从而在很大程度上避免了水吸收。预期信噪比的显著改善将直接导致SEIRA的检测灵敏度增强。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities
通过ε-近零纳米腔实现超强等离子体-声子耦合
- DOI:10.1038/s41566-020-00731-5
- 发表时间:2021
- 期刊:
- 影响因子:35
- 作者:Yoo, Daehan;de León-Pérez, Fernando;Pelton, Matthew;Lee, In-Ho;Mohr, Daniel A.;Raschke, Markus B.;Caldwell, Joshua D.;Martín-Moreno, Luis;Oh, Sang-Hyun
- 通讯作者:Oh, Sang-Hyun
Modeling and observation of mid-infrared nonlocality in effective epsilon-near-zero ultranarrow coaxial apertures
- DOI:10.1038/s41467-019-12038-3
- 发表时间:2019-10
- 期刊:
- 影响因子:16.6
- 作者:Daehan Yoo;F. Vidal-Codina;C. Ciracì;N. Nguyen;David R. Smith;J. Peraire;Sang‐Hyun Oh
- 通讯作者:Daehan Yoo;F. Vidal-Codina;C. Ciracì;N. Nguyen;David R. Smith;J. Peraire;Sang‐Hyun Oh
Impact of Surface Roughness in Nanogap Plasmonic Systems
- DOI:10.1021/acsphotonics.0c00099
- 发表时间:2020-04-15
- 期刊:
- 影响因子:7
- 作者:Ciraci, Cristian;Vidal-Codina, Ferran;Smith, David R.
- 通讯作者:Smith, David R.
Waveguide-Integrated Compact Plasmonic Resonators for On-Chip Mid-Infrared Laser Spectroscopy
- DOI:10.1021/acs.nanolett.8b03156
- 发表时间:2018-12-01
- 期刊:
- 影响因子:10.8
- 作者:Chen, Che;Mohr, Daniel A.;Oh, Sang-Hyun
- 通讯作者:Oh, Sang-Hyun
Coupled-mode theory for plasmonic resonators integrated with silicon waveguides towards mid-infrared spectroscopic sensing
- DOI:10.1364/oe.28.002020
- 发表时间:2020-01-20
- 期刊:
- 影响因子:3.8
- 作者:Chen, Che;Oh, Sang-Hyun;Li, Mo
- 通讯作者:Li, Mo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sang-Hyun Oh其他文献
Atomic layer deposition: A versatile technique for plasmonics and nanobiotechnology
- DOI:
10.1557/jmr.2011.434 - 发表时间:
2012-02-01 - 期刊:
- 影响因子:2.900
- 作者:
Hyungsoon Im;Nathan J. Wittenberg;Nathan C. Lindquist;Sang-Hyun Oh - 通讯作者:
Sang-Hyun Oh
Advances and applications of nanophotonic biosensors
纳米光子生物传感器的进展与应用
- DOI:
10.1038/s41565-021-01045-5 - 发表时间:
2022-01-17 - 期刊:
- 影响因子:34.900
- 作者:
Hatice Altug;Sang-Hyun Oh;Stefan A. Maier;Jiří Homola - 通讯作者:
Jiří Homola
A multi-method approach revealing the groundwater-stream water interaction in the Inbuk stream, Korea
- DOI:
10.1007/s12303-014-0043-5 - 发表时间:
2014-09-24 - 期刊:
- 影响因子:1.500
- 作者:
Woo-Hyun Jeon;Jin-Yong Lee;Woo-Yeong Cheong;Yeo-Hyun Park;Sang-Hyun Oh;Dong-Hwi Eum;Jae-Yong Park - 通讯作者:
Jae-Yong Park
Sang-Hyun Oh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sang-Hyun Oh', 18)}}的其他基金
Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
- 批准号:
2240245 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:
2227460 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Atomic Layer Lithography for Integrated Optoelectronic Devices with Sub-10-nm Critical Dimensions
用于具有亚 10 纳米临界尺寸的集成光电器件的原子层光刻
- 批准号:
1610333 - 财政年份:2016
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Nanomanufacturing and System Integration of Multi-Functional Metallic Pyramidal Probes
多功能金属金字塔探针的纳米制造和系统集成
- 批准号:
1363334 - 财政年份:2014
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CAREER: IDBR: Ultrasmooth Patterned Metals for Membrane Biology
职业:IDBR:用于膜生物学的超光滑图案金属
- 批准号:
1054191 - 财政年份:2011
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Enhanced efficiency in organic photovoltaic cells using engineered plasmonic nanostructures
使用工程等离子体纳米结构提高有机光伏电池的效率
- 批准号:
1067681 - 财政年份:2011
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: IDBR: Nanopore optical biosensor development for analyzing membrane protein interactions
合作研究:IDBR:用于分析膜蛋白相互作用的纳米孔光学生物传感器开发
- 批准号:
0964216 - 财政年份:2010
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
相似国自然基金
水稻 SUPER WOMAN 5 (SPW5) 基因调控花器官发育的分子机制解析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
肌细胞生成素与Super-enhancer互作形成正反馈环路促进肌损伤修复的机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
水稻SUPER WOMAN 3 (SPW3) 基因调控花器官发育的分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
水稻SUPER WOMAN 3(SPW3)基因调控花器官发育的分子机制研究
- 批准号:32100287
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于质谱的Super SILAC结合膜富集技术解析镁离子相关蛋白调控网络在Ⅲ型前列腺炎中的作用机制研究
- 批准号:22164007
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
Triptolide通过调控Super-enhancer抑制抗体产生改善抗体介导的移植肾排斥反应
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Super-enhancer驱动的LINC01468通过增强癌基因翻译促进鼻咽癌发生发展的机制研究
- 批准号:2020JJ4838
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
水稻SUPER BRABCH 1基因调控穗发育的分子机制研究
- 批准号:31971919
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Max-plus代数上的super本征问题
- 批准号:11901486
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Super-lncRNA与super-enhancer的相互作用在乳腺癌发生发展中作用机制的研究
- 批准号:81902680
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Exploration of the strong coupling regime between the 3D cavity and super conducting quantum bits for low-mass wave-like dark matter searches
探索 3D 腔和超导量子比特之间的强耦合机制,用于低质量波状暗物质搜索
- 批准号:
23K13093 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EAGER: Spintronic extreme sub-wavelength and super-gain active electronically scanned antenna (AESA) enabled by phonon-magnon-plasmon-photon coupling.
EAGER:自旋电子极端亚波长和超增益有源电子扫描天线(AESA),通过声子-磁振子-等离子体-光子耦合实现。
- 批准号:
2235789 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
EAGER: SUPER: Coupling High-Energy Phonons into High-Tc Superconductors
EAGER:SUPER:将高能声子耦合到高温超导体中
- 批准号:
2132343 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Development of a super-clean ultra-intense petawatt laser by controlling non-linear coupling effect
通过控制非线性耦合效应开发超净超强拍瓦激光器
- 批准号:
20H01882 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mass Sensing, Strong Vibrational Coupling and Super-Resolution Imaging of Noble Metal Nanostructures
贵金属纳米结构的质量传感、强振动耦合和超分辨率成像
- 批准号:
2002300 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Planet Formation: Coupling Stellar to Super-Earth Composition
行星形成:恒星与超级地球组成的耦合
- 批准号:
541260-2019 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
University Undergraduate Student Research Awards
Development of super resolution optical imaging device coupling between photons and electrons
光子与电子耦合超分辨率光学成像器件的研制
- 批准号:
19K22101 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Super Cycles: Coupling Pressure Swing Adsorption to Other Regeneration Techniques
超级循环:将变压吸附与其他再生技术相结合
- 批准号:
0754906 - 财政年份:2008
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Optical Coupling of Waveguide with the Super-Sphere of Glass Optical Resonator through the Near Field Optical Gate
波导与玻璃光学谐振腔超球面通过近场光门的光耦合
- 批准号:
18350096 - 财政年份:2006
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exploring Super-Efficient Energy Coupling Mechanisms for Materials Processing and Manufacturing
探索材料加工和制造的超高效能量耦合机制
- 批准号:
0425206 - 财政年份:2004
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant