Controlling the Conductivity of Nanocrystal Solids through their Surface Chemistry
通过表面化学控制纳米晶体固体的电导率
基本信息
- 批准号:1610412
- 负责人:
- 金额:$ 43.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project funded by the Macromolecular, Supramolecular and Nanochemistry program of the Chemistry Division, Professor Sean T. Roberts of the University of Texas at Austin and his graduate students study very small inorganic particles called semiconductor nanocrystals. Nanocrystals are tiny particles that contain thousands of atoms. While they are much larger than chemical molecules, which contain only a few atoms, they are still much smaller than solid materials that are large enough to see with the naked eye, containing trillions of atoms. Nanoscale materials are unique because they have sizes intermediate between molecules and solids, but sometimes have properties not easily predicted by averaging the two size extremes. The optical properties of these nanocrystals can be tuned by altering their size and shape, which makes them useful for applications such as displays, photovoltaic cells, and photodetectors. However, processing these materials into conductive thin films needed for electronics remains difficult. The researchers approach this challenge by combining the nanocrystals with surface-bound molecules designed to improve the electrical conductivity of nanocrystal thin films. The resulting structures are studied using spectroscopic techniques and photoconductivity measurements. This project also includes an outreach effort entitled GReen Energy At Texas (GREAT) designed to attract Community College students to the physical sciences by introducing them to green energy research. The specific goals of this project are to understand the key factors that facilitate electronic coupling between semiconductor nanocrystals and their surface ligands and to use interactions of this type to improve charge transport in nanocrystal optoelectronic films. The nature of the ligand can impact the bandgap and optical properties of semiconductor nanocrystals. This suggests some degree of electronic coupling between the nanocrystals and the ligands that involves charge transfer. This project quantitatively assesses the degree to which ligands facilitate charge transfer between nanocrystals in thin film. To accomplish this goal, time-resolved Raman spectroscopy is used to map charge density changes within nanocrystal ligand shells following photoexcitation. Two-dimensional electronic spectroscopy and photo-CELIV (charge extraction by linearly increasing voltage) measurements determine how exciton-delocalizing ligands (EDLs) modify charge carrier transport in nanocrystal thin films.
在这个由化学系的大分子、超分子和纳米化学项目资助的项目中,肖恩·T。得克萨斯大学奥斯汀分校的罗伯茨和他的研究生研究被称为半导体纳米晶体的非常小的无机粒子。 纳米晶体是包含数千个原子的微小颗粒。虽然它们比只包含几个原子的化学分子大得多,但它们仍然比包含数万亿个原子的固体材料小得多。纳米尺度材料是独特的,因为它们的尺寸介于分子和固体之间,但有时具有不容易通过平均两个极端尺寸来预测的特性。这些纳米晶体的光学性质可以通过改变它们的尺寸和形状来调节,这使得它们可用于显示器,光伏电池和光电探测器等应用。然而,将这些材料加工成电子产品所需的导电薄膜仍然很困难。研究人员通过将纳米晶体与表面结合的分子相结合来解决这一挑战,这些分子旨在提高纳米薄膜的导电性。使用光谱技术和光电导测量所得到的结构进行了研究。该项目还包括一项名为“得克萨斯州绿色能源”的外联工作,旨在通过向社区学院学生介绍绿色能源研究,吸引他们学习物理科学。该项目的具体目标是了解促进半导体纳米晶体与其表面配体之间电子耦合的关键因素,并使用这种类型的相互作用来改善半导体光电薄膜中的电荷传输。配体的性质可以影响半导体纳米晶体的带隙和光学性质。这表明纳米晶体和配体之间存在一定程度的电子耦合,涉及电荷转移。这个项目定量评估了配体促进薄膜中纳米晶体之间电荷转移的程度。为了实现这一目标,时间分辨的拉曼光谱被用来映射电荷密度的变化后,光激发的配体壳内。二维电子光谱和photo-CELIV(电荷提取线性增加电压)测量确定如何激子离域配体(EDLs)修改电荷载流子输运的薄膜。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Charge carrier concentration dependence of ultrafast plasmonic relaxation in conducting metal oxide nanocrystals
- DOI:10.1039/c7tc00600d
- 发表时间:2017-06
- 期刊:
- 影响因子:6.4
- 作者:Robert W. Johns;Michelle A. Blemker;Michael S. Azzaro;S. Heo;Evan L. Runnerstrom;D. Milliron;S. Roberts
- 通讯作者:Robert W. Johns;Michelle A. Blemker;Michael S. Azzaro;S. Heo;Evan L. Runnerstrom;D. Milliron;S. Roberts
Achieving spin-triplet exciton transfer between silicon and molecular acceptors for photon upconversion
- DOI:10.1038/s41557-019-0385-8
- 发表时间:2020-02-01
- 期刊:
- 影响因子:21.8
- 作者:Xia, Pan;Raulerson, Emily K.;Roberts, Sean T.
- 通讯作者:Roberts, Sean T.
Exciton-Delocalizing Ligands Can Speed Up Energy Migration in Nanocrystal Solids
- DOI:10.1021/acs.nanolett.8b01079
- 发表时间:2018-05-01
- 期刊:
- 影响因子:10.8
- 作者:Azzaro, Michael S.;Dodin, Amro;Roberts, Sean T.
- 通讯作者:Roberts, Sean T.
Modulation of the Visible Absorption and Reflection Profiles of ITO Nanocrystal Thin Films by Plasmon Excitation
- DOI:10.1021/acsphotonics.9b01825
- 发表时间:2020-05-20
- 期刊:
- 影响因子:7
- 作者:Blemker, Michelle A.;Gibbs, Stephen L.;Roberts, Sean T.
- 通讯作者:Roberts, Sean T.
Can Exciton-Delocalizing Ligands Facilitate Hot Hole Transfer from Semiconductor Nanocrystals?
- DOI:10.1021/acs.jpcc.6b08178
- 发表时间:2016-12
- 期刊:
- 影响因子:3.7
- 作者:Michael S. Azzaro;Mark C. Babin;Shannon K. Stauffer;G. Henkelman;S. Roberts
- 通讯作者:Michael S. Azzaro;Mark C. Babin;Shannon K. Stauffer;G. Henkelman;S. Roberts
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Roberts其他文献
Poor Long-Term Efficacy of Prevnar-13 in Sickle Cell Disease Mice Is Associated with an Inability to Sustain Pneumococcal-Specific Antibody Titers
Prevnar-13 对镰状细胞病小鼠的长期疗效不佳与无法维持肺炎球菌特异性抗体滴度有关
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3.7
- 作者:
S. Szczepanek;Sean Roberts;K. Rogers;C. Cotte;A. Adami;S. Bracken;S. Salmon;E. Secor;R. Thrall;B. Andemariam;D. Metzger - 通讯作者:
D. Metzger
Multidimensional IR Study Of The Structure And Dynamics Of Elastin Protein
- DOI:
10.1016/j.bpj.2008.12.1617 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Joshua Lessing;Sean Roberts;Jongjin Kim;Kevin Jones;Ziad Ganim;Andrei Tokmakoff - 通讯作者:
Andrei Tokmakoff
Influenza Vaccination Protects Against Pandemic H1N1 Infection in Sickle Cell Disease Mice.
流感疫苗可预防镰状细胞病小鼠感染 H1N1 流感大流行。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2.2
- 作者:
Sean Roberts;Dennis W Metzger;S. Szczepanek - 通讯作者:
S. Szczepanek
Sean Roberts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean Roberts', 18)}}的其他基金
Causal approaches to investigating language evolution
研究语言演化的因果方法
- 批准号:
AH/T006927/1 - 财政年份:2021
- 资助金额:
$ 43.74万 - 项目类别:
Research Grant
MRI: Development of a Sub-diffraction Limited Microscope for Imaging Ultrafast Dynamics from the Visible to Mid-infrared Spectral Range
MRI:开发亚衍射有限显微镜,用于对可见光到中红外光谱范围的超快动态成像
- 批准号:
2019083 - 财政年份:2020
- 资助金额:
$ 43.74万 - 项目类别:
Standard Grant
Creating Functional Nanocrystal-Molecule Interfaces for Spin-triplet Energy Transfer
创建用于自旋三重态能量转移的功能纳米晶体分子界面
- 批准号:
2003735 - 财政年份:2020
- 资助金额:
$ 43.74万 - 项目类别:
Standard Grant
CAREER: Tracking Charge and Energy Transfer at Buried Organic Interfaces
职业:跟踪埋藏有机界面的电荷和能量转移
- 批准号:
1654404 - 财政年份:2017
- 资助金额:
$ 43.74万 - 项目类别:
Continuing Grant
Exciton Transport and Charge Separation in Organic Solar Cells Visualized with Interface Specific Femtosecond Spectroscopy
使用界面特定飞秒光谱可视化有机太阳能电池中的激子传输和电荷分离
- 批准号:
0937015 - 财政年份:2009
- 资助金额:
$ 43.74万 - 项目类别:
Standard Grant
相似海外基金
Electrical conductivity measurements of silicate melts at the Earth's mantle conditions
地幔条件下硅酸盐熔体的电导率测量
- 批准号:
24K17146 - 财政年份:2024
- 资助金额:
$ 43.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Overcoming the trade-off between thermopower and conductivity in transition metal oxides
职业生涯:克服过渡金属氧化物热电势和电导率之间的权衡
- 批准号:
2340234 - 财政年份:2024
- 资助金额:
$ 43.74万 - 项目类别:
Continuing Grant
CAREER: Manufacturing of Continuous Network Graphene-Copper Composites for Ultrahigh Electrical Conductivity
职业:制造具有超高导电性的连续网络石墨烯-铜复合材料
- 批准号:
2338609 - 财政年份:2024
- 资助金额:
$ 43.74万 - 项目类别:
Standard Grant
Charge Transport in Symmetry Breaking Conjugated Molecular Materials: Experimental Approach by Conductivity Measurements under CPL Excitation
对称破缺共轭分子材料中的电荷传输:CPL 激励下电导率测量的实验方法
- 批准号:
23KF0045 - 财政年份:2023
- 资助金额:
$ 43.74万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 43.74万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Elucidation of Mechanism of Phonon Thermal Conductivity Reduction by Orbital Fluctuation for Development of Novel Thermal Functional Materials
阐明轨道涨落降低声子导热率的机制,以开发新型热功能材料
- 批准号:
23KJ0893 - 财政年份:2023
- 资助金额:
$ 43.74万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Boron-based semiconductors - the next generation of high thermal conductivity materials
硼基半导体——下一代高导热材料
- 批准号:
EP/W034751/1 - 财政年份:2023
- 资助金额:
$ 43.74万 - 项目类别:
Research Grant
The influence of magnetic fields and electrical conductivity variations on vortex formation
磁场和电导率变化对涡流形成的影响
- 批准号:
2881746 - 财政年份:2023
- 资助金额:
$ 43.74万 - 项目类别:
Studentship
I-Corps: High thermal conductivity polymers and phase change materials based on graphene
I-Corps:基于石墨烯的高导热聚合物和相变材料
- 批准号:
2330247 - 财政年份:2023
- 资助金额:
$ 43.74万 - 项目类别:
Standard Grant
CAREER: Charge Delocalization: A New Tool for Controlling Ionic Selectivity and Conductivity of Ion-Exchange Membranes
职业:电荷离域:控制离子交换膜的离子选择性和电导率的新工具
- 批准号:
2237122 - 财政年份:2023
- 资助金额:
$ 43.74万 - 项目类别:
Continuing Grant