OP: Compressive Nonlinear Optical Microscopy for Dynamic Chemical Imaging of Surfaces

OP:用于表面动态化学成像的压缩非线性光学显微镜

基本信息

  • 批准号:
    1610453
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

With support from the Chemical Measurement and Imaging Program in the Division of Chemistry, Professor Baldelli at the University of Houston and Professor Kelly at Rice University are developing a new type of microscope that is able to see molecules on surfaces faster and with higher sensitivity than regular microscopes. With cameras, pictures can be taken that show colors to help identify objects; for example, grass is green and sky is blue. However, to look at molecules, more specific information is needed about the "colors" that molecules absorb. For many molecules, this absorption occurs in the infrared region of light. To look at these infrared colors, traditional cameras are not very good so methods that can obtain pictures without cameras are necessary. Professor Baldelli and Professor Kelly are developing a new type of microscope to figure out the surface image of surface molecules. The results of this new microscope are useful to all researchers interested in surfaces related to biomaterials, energy, and environmental topics. For example, it can be used to study the distribution of lipid molecules on cell membranes that controls proteins moving in and out of cells, which in turn regulate cell growth and signaling. It can also be used to look at chemical dopants on a thin film that accelerate the oxygen reduction reaction in fuel cells, an important step in efficient energy conversion. The research project also presents a valuable opportunity to learn and experience collaborative multidisciplinary research -- a current emphasis of science and engineering education. The topics and research project have many components to encourage undergraduate and high school students into the research, including instrument building, data analysis and interpretation, and research presentations. This later point is an important aspect since it builds much confidence in the younger students and scientist.Professors Baldelli and Kelly are developing a new state-of-the-art surface spectroscopic imaging microscope to study the molecular, spatial, and temporal evolution of patterns and chemical heterogeneity present in many fundamental and technologically important systems. This new CS-SFG (compressive sensing-sum frequency generation vibrational spectroscopy) imaging technique utilizes a digital mirror device (DMD). The DMD is the heart of the DLP projector and flat screen displays. It is a 2-D array of mirrors that reflects the SFG image onto a detector. Using computer control and a random pattern generator, the signal intensity changes depending on which mirrors are reflecting toward the detector. Each pattern results from 50% of the randomly chosen mirrors being turned on for each measurement. After many such measurements, the image is reconstructed based on the signal and the known mirror pattern. CS allows for efficient image acquisition where only a few percent of the total information is necessary to faithfully reconstruct the surface features. Two configurations broad-band and narrow-band IR are set up to evaluate the effect on the image reconstruction. In addition the detection system incorporates heterodyne detection to extract phase information forth monolayer signal. This new capability allows for alternate imaging schemes and orientation analysis. The effect of compression algorithms and quantitative analysis ultimately aid in the interpretation of heterogeneous monolayer films on surfaces. The CS-SFG microscope will be a significant improvement over current approaches that either use probe areas on the order of a millimeter or acquire the full hyperspectral data cube but at considerable expense in sample throughput. Once demonstrated, Professors Baldelli and Kelly are to employ this microscope to investigate the molecular-level static and dynamic details of chemical patterns (such as lipid domains) formed under the control condition of lithography and the transfer of films to solid substrates via the Langmuir-Blodgett technique. The research project provides both graduate students and local high school students with highly interdisciplinary training in chemistry, physics, engineering, and computer science.
在化学系化学测量和成像项目的支持下,休斯顿大学的Baldelli教授和莱斯大学的Kelly教授正在开发一种新型显微镜,这种显微镜能够比普通显微镜更快地看到表面上的分子,灵敏度更高。 有了相机,可以拍摄显示颜色的照片,以帮助识别物体;例如,草是绿色,天空是蓝色的。 然而,要观察分子,需要关于分子吸收的“颜色”的更具体的信息。对于许多分子来说,这种吸收发生在光的红外区域。 要查看这些红外颜色,传统的相机不是很好,因此可以在没有相机的情况下获得图片的方法是必要的。 Baldelli教授和Kelly教授正在开发一种新型的显微镜,以计算出表面分子的表面图像。 这种新显微镜的结果对所有对生物材料,能源和环境主题相关表面感兴趣的研究人员都很有用。例如,它可用于研究脂质分子在细胞膜上的分布,控制蛋白质进出细胞,进而调节细胞生长和信号传导。它还可以用来观察薄膜上的化学掺杂剂,这些化学掺杂剂可以加速燃料电池中的氧还原反应,这是有效能量转换的重要步骤。该研究项目还提供了一个学习和体验多学科合作研究的宝贵机会-这是科学和工程教育的当前重点。 主题和研究项目有许多组成部分,以鼓励本科生和高中生参与研究,包括仪器建设,数据分析和解释,以及研究演示。 后一点是一个重要的方面,因为它建立了年轻的学生和科学家的信心。Baldelli和Kelly教授正在开发一种新的最先进的表面光谱成像显微镜,用于研究许多基础和技术重要系统中存在的模式和化学异质性的分子,空间和时间演变。这种新的CS-SFG(压缩传感和频产生振动光谱)成像技术利用数字镜器件(DMD)。 DMD是DLP投影机和平板显示器的核心。 它是一个二维反射镜阵列,将SFG图像反射到探测器上。 使用计算机控制和随机模式发生器,信号强度根据反射镜反射到检测器的反射而变化。 每个图案都是由每次测量打开50%的随机选择的镜子产生的。 在许多这样的测量之后,基于信号和已知的反射镜图案来重建图像。 CS允许高效的图像采集,其中仅需要总信息的百分之几来忠实地重建表面特征。 分别建立了宽带和窄带两种结构的红外成像系统来评价其对图像重建的影响。 此外,该检测系统还采用外差检测技术,从单层信号中提取相位信息。 这种新功能允许替代成像方案和方向分析。 压缩算法和定量分析的效果最终有助于解释表面上的非均匀单层膜。CS-SFG显微镜将是对当前方法的重大改进,当前方法要么使用毫米量级的探测区域,要么获取完整的高光谱数据立方体,但在样本吞吐量方面花费相当大的代价。一旦得到证明,Baldelli教授和Kelly教授将使用这种显微镜来研究在光刻控制条件下形成的化学图案(例如脂质结构域)的分子水平静态和动态细节,并通过Langmuir-Blodgett技术将薄膜转移到固体基底上。该研究项目为研究生和当地高中生提供化学,物理,工程和计算机科学方面的高度跨学科培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Baldelli其他文献

Infrared image upconversion
红外图像上转换
  • DOI:
    10.1038/nphoton.2011.9
  • 发表时间:
    2011-02-01
  • 期刊:
  • 影响因子:
    32.900
  • 作者:
    Steven Baldelli
  • 通讯作者:
    Steven Baldelli
和周波分光イメージングによるDPh-BTBT薄膜トランジスタの電界挙動
通过和频光谱成像研究 DPh-BTBT 薄膜晶体管的电场行为
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    片桐 千帆;宮前 孝行;Hao Li;Fangyang Yang;Steven Baldelli
  • 通讯作者:
    Steven Baldelli
Simulating the ionic liquid mixing with organic-solvent clarifies the mixture’s SFG spectral behavior and the specific surface region originating SFG
  • DOI:
    10.1038/s41598-024-74561-8
  • 发表时间:
    2024-10-05
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Leila Sakhtemanian;Anjeeta Duwadi;Steven Baldelli;Mohammad Hadi Ghatee
  • 通讯作者:
    Mohammad Hadi Ghatee
Imaging on surfaces with vibrational sum frequency generation microscopy
  • DOI:
    10.1016/j.susc.2024.122627
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sarah M. Ortiz;Steven Baldelli
  • 通讯作者:
    Steven Baldelli
Surface alignment of the <em>N</em>-octadecylazatriquinacenium cation as determined by sum frequency generation on the surface of H<sub>2</sub>O and D<sub>2</sub>O
  • DOI:
    10.1016/j.cplett.2006.06.038
  • 发表时间:
    2006-08-18
  • 期刊:
  • 影响因子:
  • 作者:
    Steven Baldelli;Mark Mascal;Jordi Cerón Bertran
  • 通讯作者:
    Jordi Cerón Bertran

Steven Baldelli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Baldelli', 18)}}的其他基金

Chemical Imaging of Metal Surfaces at the Solid-Liquid Interface: Effects of Grain Structure on Electrocatalytic Reactions
固液界面金属表面的化学成像:晶粒结构对电催化反应的影响
  • 批准号:
    2246583
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Spectroscopic Investigations of Pattern Formation and Chemically Heterogeneous Surfaces using Sum Frequency Generation Imaging Microscopy
使用和频生成成像显微镜对图案形成和化学异质表面进行光谱研究
  • 批准号:
    1361885
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Materials World Network: Local Surface Chemistry and Atmospheric Corrosion of Cu-Zn Alloys
材料世界网:铜锌合金的局部表面化学和大气腐蚀
  • 批准号:
    0856009
  • 财政年份:
    2009
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Sum Frequency Generation Imaging of Patterns on Surfaces
表面图案的和频生成成像
  • 批准号:
    0650779
  • 财政年份:
    2007
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Compressive sensing理论的单探测器太赫兹成像技术
  • 批准号:
    60977009
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
Compressive Sensing 理论及信号最佳稀疏分解方法研究
  • 批准号:
    60776795
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

EAGER: IMPRESS-U: Exploratory Research on Generative Compression for Compressive Lidar
EAGER:IMPRESS-U:压缩激光雷达生成压缩的探索性研究
  • 批准号:
    2404740
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
INVESTIGATING IN VIVO COMPRESSIVE FORCES: CELL DIVISION, NUCLEAR INTEGRITY, CANCER INITIATION
研究体内压力:细胞分裂、核完整性、癌症发生
  • 批准号:
    MR/W024519/1
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Multidimensional and Compressive Super-Resolution: Theory, Computation, and Fundamental Limits
多维和压缩超分辨率:理论、计算和基本限制
  • 批准号:
    2309602
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Fracture limit of steels under a compressive stress state nearby uniaxial compression
近单轴压缩压应力状态下钢材的断裂极限
  • 批准号:
    23K04435
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Compressive Subsurface Radar Imaging: fast and smart detection of buried explosive threats
压缩式地下雷达成像:快速、智能地检测埋藏的爆炸物威胁
  • 批准号:
    EP/X022951/1
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Fellowship
Ensuring Data Privacy in Deep Learning through Compressive Learning
通过压缩学习确保深度学习中的数据隐私
  • 批准号:
    EP/X03447X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
CAREER: Theoretical Framework for Design and Analysis of Snapshot Compressive Imaging Systems
职业:快照压缩成像系统设计和分析的理论框架
  • 批准号:
    2237538
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Deep compressive quantitative MRI imaging
深度压缩定量 MRI 成像
  • 批准号:
    EP/X001091/1
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Applications of Infinite Dimensional Compressive Sensing to Multi-Dimensional Analog Images using Machine Learning to Enhance Results
利用机器学习将无限维压缩感知应用于多维模拟图像以增强结果
  • 批准号:
    2889834
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
Collaborative Research: Cross-plane Heat Conduction in 2D Materials under Large Compressive Strain
合作研究:大压缩应变下二维材料的横向热传导
  • 批准号:
    2211696
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了