Multiscale Modeling of Laser-Induced Surface Nanostructuring of Metals
激光诱导金属表面纳米结构的多尺度建模
基本信息
- 批准号:1610936
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-15 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL ABSTRACTThis award supports computational research and education to develop and use computational modeling tools to understand how very fast laser pulses can modify the structure and surfaces of metals and semiconductors in potentially complex and intricate ways. The ability of very fast laser pulses to deposit energy, for example in the form of heat, in small regions of irradiated material surfaces makes it possible to perform very selective surface modifications and produce unique surface morphologies, metastable phases and unusual arrangements of crystal defects which constitutes microstructure. Fast laser pulses also provide unique opportunities to investigate material behavior under extreme conditions of highly energetic electrons, rapid heating and cooling, and ultrafast mechanical deformation. The objective of this research project is to develop an advanced computational model that contains descriptions of essential physical processes across scales of length and time and is capable of realistic representation of how very fast laser pulses interact with targets made of a wide range of materials from metal alloys to organic compounds. Through the use of very fast computers with many processers that operate in parallel, the PI will apply this model to investigate the main factors that control the surface morphology and microstructure in laser-modified materials. While the laser pulse lasts for only a very short time, the time for the material to respond is much longer. Together with the size of the simulated material sample and complexity of the physical processes stimulated by the response leads to the need for high computer performance. The investigation of how materials respond to short-pulse laser irradiation is aimed to provide insights into the peculiarities of material behavior far from the steady state of equilibrium, under extreme conditions of ultrafast heating, cooling, and deformation rates. Ultrafast laser surface modification has a wide range of potential applications including materials fabrication with enhanced surface properties including hardness, reduced friction, and reduced wear. The involvement of students in all aspects of high-performance parallel computing and close interaction with experimental and computational collaborators worldwide will create a fertile educational environment in the quickly expanding areas of scientific computing and laser-materials interactions. An educational website containing an accessible presentation of basic concepts of laser-materials interactions illustrated by images and animations produced in this project will be developed as a platform for conveying the relevance and excitement of the computational materials research to broader audiences.TECHNICAL ABSTRACTThis award supports theoretical and computational research, and education in short pulse laser modification of material surface morphology. The ability of short pulse laser irradiation to produce unique surface morphologies, metastable phases and unusual microstructure has been demonstrated in experiments and is generally attributed to the conditions of strong electronic, thermal, phase, and mechanical nonequilibrium created in irradiated targets by the laser excitation. Detailed understanding of the relations between the fast nonequilibrium processes caused by the laser energy deposition and the resulting structure and properties of laser-treated regions of the targets, however, is still lacking, thus limiting the expansion of laser technologies into the new domains of nanoscale material processing and fabrication. The main objective of this research project is to provide, through advanced multiscale modeling and theoretical analysis, detailed information on the mechanisms and kinetics of fast nonequilibrium structural and phase transformations triggered by short pulse laser irradiation of metal targets and responsible for the generation of complex hierarchical surface morphology at the nanoscale and microscale, and unusual surface microstructure.A key component of this project is the design and verification of a novel multiscale computational approach combining, in a synergistic manner, large-scale atomistic simulations of the initial material response to short pulse laser excitation, including rapid melting, cavitation, and, at higher laser fluences, explosive boiling and phase decomposition of superheated liquid, with a coarse-grained modeling of the subsequent slower hydrodynamic motion and solidification of the melted surface region. The new computational model will enable a detailed exploration of the complex interplay of the totality of laser-induced processes occurring at different time- and length-scales and will reveal the connections between irradiation conditions, material properties, crystallographic orientation of grains in polycrystalline targets, and the microstructure of surface features generated by laser irradiation.The emergence of new flexible computational methodology for multiscale modeling of material response to a rapid energy deposition is likely to make a broad impact in the general area of computational materials science. The methods developed within this project will be broadly disseminated to the research community and applied, through existing and new collaborations, to different material systems, ranging from metal alloys to organic materials, and various laser processing conditions, for example the presence of a background gas, liquid environment, or a transparent overlayer. Owing to the size of the simulated material, the need for long simulation time, and the complexity of the model, high performance computing simulations are required.The involvement of students in all aspects of high-performance parallel computing and close interaction with experimental and computational collaborators worldwide will create a fertile educational environment in the quickly expanding areas of scientific computing and laser-materials interactions. An educational website containing an accessible presentation of basic concepts of laser-materials interactions illustrated by images and animations produced in this project will be developed as a platform for conveying the relevance and excitement of the computational materials research to broader audiences.
非技术摘要这一奖项支持计算研究和教育,以开发和使用计算建模工具,以了解非常快的激光脉冲如何以潜在的复杂和复杂的方式修改金属和半导体的结构和表面。 在辐射的材料表面的小区域中,非常快速的激光脉冲沉积能量的能力,例如以热的形式沉积能量,使得进行非常选择性的表面修饰并产生独特的表面形态,亚稳态相和构成微观结构的晶体缺陷的异常排列。快速激光脉冲还提供了独特的机会,可以在高能电子,快速加热和冷却以及超快机械变形的极端条件下研究物质行为。 该研究项目的目的是开发一个先进的计算模型,该模型包含跨长度和时间尺度的基本物理过程的描述,并且能够实现现实的表示激光脉冲如何与从金属合金到有机化合物的各种材料制成的靶标相互作用。通过与许多并行操作的处理器使用非常快的计算机,PI将应用该模型来研究控制激光修饰材料中表面形态和微观结构的主要因素。尽管激光脉冲仅持续很短的时间,但材料响应的时间却更长。加上模拟材料样本的大小以及响应刺激的物理过程的复杂性,导致需要高计算机性能。在超快加热,冷却和变形率的极端条件下,对材料如何对短脉冲激光辐照的反应方式旨在洞悉远离平衡状态的材料行为的特殊性。超快激光表面修饰具有广泛的潜在应用,包括具有增强表面特性的材料制造,包括硬度,减少摩擦和磨损降低。学生参与高性能平行计算的各个方面,以及与全球实验和计算合作者的密切互动,将在科学计算和激光 - 材料相互作用的快速扩展领域创造肥沃的教育环境。一个教育网站,其中包含可访问的激光材料相互作用的基本概念,该网站将开发出图像和动画,将开发为一个平台,用于传达计算材料研究的相关性和兴奋感与更广泛的受众群体。TechnicalAbstract Abstract Award Threational Interiality和计算研究的理论和脉冲激光表面表面的教育。短脉冲激光辐照产生独特的表面形态,亚稳态相和异常微观结构的能力已在实验中证明,通常归因于强烈的电子,热,相和机械非元素的条件,这是通过激发在辐射靶标产生的。然而,仍然缺乏对激光能量沉积引起的快速非平衡过程之间的关系的详细理解,而靶标的激光处理区域的结构和性能仍缺乏,因此仍缺乏,从而限制了激光技术扩展到纳米级材料处理和制造的新领域。该研究项目的主要目的是通过高级的多尺度建模和理论分析,详细信息,详细信息和动力学的详细信息和动力学的快速脉冲结构和相变是由金属目标的短脉冲激光照射引起的,以及负责在Nansoscale和Mirscale和Mirscale和Mirscale和Unisual usus ussulual Surpive.A的复杂层次表面形态的产生的产生的脉冲和无限量的构图。多尺度计算方法以协同的方式结合对短脉冲激发激发的初始材料响应的大规模原子模拟,包括快速熔化,空化以及在较高的激光液体下,爆炸性沸腾的沸腾和过热液体的相位分解,并以随后的表面表面融化的固体化和固体化的固体效果的粗糙元素建模。 新的计算模型将详细探讨在不同时间和长度尺度上发生的激光诱导的过程的复杂相互作用,并将揭示辐射条件,材料特性,材料特性,晶粒晶体在多晶体目标中的晶粒的结晶方向以及多晶体范围的质量响应的质量响应的触发范围,以及激光范围的触发范围的相关范围。对于快速的能量沉积可能会对计算材料科学的一般领域产生广泛的影响。该项目中开发的方法将广泛传播到研究界,并通过现有和新的合作应用于不同的材料系统,从金属合金到有机材料以及各种激光处理条件,例如存在背景气体,液体环境或透明覆盖层。由于模拟材料的大小,需要长时间的模拟时间以及模型的复杂性,需要高性能计算模拟。学生参与高性能平行计算的各个方面,并与全球实验和计算合作者紧密相互作用,将在全球的实验和计算合作者之间建立一个肥沃的教育环境。一个教育网站,其中包含可访问的介绍本项目中产生的图像和动画所说明的激光材料交互的基本概念,这将是一个平台,用于将计算材料研究的相关性和兴奋传达给更广泛的受众。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Atomistic Modeling of Ultrashort Pulse Laser-Induced Generation of Crystal Defects
超短脉冲激光诱导晶体缺陷生成的原子建模
- DOI:10.1017/s1431927622003816
- 发表时间:2022
- 期刊:
- 影响因子:2.8
- 作者:He, Miao;Karim, Eaman T.;Shugaev, Maxim V.;Shih, Cheng-Yu;Zhigilei, Leonid V.
- 通讯作者:Zhigilei, Leonid V.
Atomistic View of Laser Fragmentation of Gold Nanoparticles in a Liquid Environment
- DOI:10.1021/acs.jpcc.1c03146
- 发表时间:2021-06-09
- 期刊:
- 影响因子:3.7
- 作者:Huang, Hao;Zhigilei, Leonid, V
- 通讯作者:Zhigilei, Leonid, V
The effect of pulse duration on nanoparticle generation in pulsed laser ablation in liquids: insights from large-scale atomistic simulations
- DOI:10.1039/d0cp00608d
- 发表时间:2020-04-07
- 期刊:
- 影响因子:3.3
- 作者:Shih, Cheng-Yu;Shugaev, Maxim, V;Zhigilei, Leonid, V
- 通讯作者:Zhigilei, Leonid, V
Effect of a liquid environment on single-pulse generation of laser induced periodic surface structures and nanoparticles
- DOI:10.1039/d0nr00269k
- 发表时间:2020-04-14
- 期刊:
- 影响因子:6.7
- 作者:Shih, Cheng-Yu;Gnilitskyi, Iaroslav;Zhigilei, Leonid, V
- 通讯作者:Zhigilei, Leonid, V
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonid Zhigilei其他文献
Leonid Zhigilei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonid Zhigilei', 18)}}的其他基金
EAGER: IMPRESS-U: Gradient surface nanostructuring with short laser pulses
EAGER:IMPRESS-U:使用短激光脉冲进行梯度表面纳米结构
- 批准号:
2406599 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Participant Support for 7th International Conference on Advanced Nanoparticle Generation and Excitation by Lasers in Liquids (ANGEL); Charlottesville, Virginia; 26-31 May 2024
第七届液体中激光产生和激发高级纳米粒子国际会议 (ANGEL) 的与会者支持;
- 批准号:
2348099 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF-DFG: Nonequilibrium Thermal Processing of Nanoparticles via Laser Melting and Fragmentation in Liquid
NSF-DFG:通过激光熔化和液体破碎对纳米颗粒进行非平衡热处理
- 批准号:
2302577 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Microscopic mechanisms and kinetics of laser-induced phase explosion
合作研究:激光诱导相爆炸的微观机制和动力学
- 批准号:
2126785 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Atomistic Modeling of the Generation of Metastable Nanoparticles and Surface Structures in Pulsed Laser Ablation in Liquids
液体中脉冲激光烧蚀中亚稳态纳米粒子和表面结构生成的原子建模
- 批准号:
1663429 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Ultrafast Laser-Driven Phase Transitions in Nanoparticles near their Melting
合作研究:纳米颗粒熔化附近的超快激光驱动相变
- 批准号:
1708486 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Atomistic Simulations of Acoustic Activation of Surface Processes
表面过程声激活的原子模拟
- 批准号:
1562929 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mechanisms of Nanoparticle Generation by Laser Ablation of Thin Films in Liquids
液体中激光烧蚀薄膜产生纳米粒子的机制
- 批准号:
1301298 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Computational study of thermal transport in carbon nanotube based nanocomposites
碳纳米管基纳米复合材料热传输的计算研究
- 批准号:
1033919 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Computational Study of the Generation of Crystal Defects and Controlled Modification of Surface Microstructure by Short Pulse Laser Irradiation
短脉冲激光辐照晶体缺陷产生及表面微结构可控改性的计算研究
- 批准号:
0907247 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
盾构主轴承激光微造型协同相变硬化的抗疲劳机理及主动设计
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
盾构主轴承激光微造型协同相变硬化的抗疲劳机理及主动设计
- 批准号:52105259
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
人工关节金属件表面激光冲击微造型的无菌性松动抑制机理
- 批准号:51605296
- 批准年份:2016
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
激光微造型对偶片的反变形主动设计及液粘传动机理研究
- 批准号:51575245
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
医用钛合金表面的激光冲击微造型工艺及其耐磨性能研究
- 批准号:51405207
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Multiscale Modeling and Applications of Three-Dimensional (3D) Laser Bio-printing
三维(3D)激光生物打印的多尺度建模和应用
- 批准号:
RGPIN-2018-06767 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Multiscale Modeling and Applications of Three-Dimensional (3D) Laser Bio-printing
三维(3D)激光生物打印的多尺度建模和应用
- 批准号:
RGPIN-2018-06767 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Physics-based Control-oriented Multiscale Modeling of Laser Powder Bed Fusion Additive Manufacturing
基于物理的控制导向的激光粉末床熔融增材制造多尺度建模
- 批准号:
2015930 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Multiscale Modeling and Applications of Three-Dimensional (3D) Laser Bio-printing
三维(3D)激光生物打印的多尺度建模和应用
- 批准号:
RGPIN-2018-06767 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Multiscale Modeling and Applications of Three-Dimensional (3D) Laser Bio-printing
三维(3D)激光生物打印的多尺度建模和应用
- 批准号:
RGPIN-2018-06767 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual