High Frequency Transformer Winding Power Loss Reduction
减少高频变压器绕组功率损耗
基本信息
- 批准号:1611048
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When electrical current flows through conventional transformer windings, the current is not evenly distributed within the windings. High winding power losses are generated where the current has high concentration and the winding is not fully utilized where the current has low concentration. High current concentration generates high winding power loss which leads to reduced energy conversion efficiency and high temperature. High temperature reduces transformer lifetime, so more windings must be used in transformer design to reduce power loss. As a result, transformers are bulky and heavy which increases transformer cost and cannot meet today's demand for highly compact designs. This research pursues a fundamental solution to this problem. It has been preliminarily discovered by the investigator that the current distribution within transformer windings always reaches a minimum magnetic energy state. Based on this discovery, a novel transformer winding design technique is being developed using the relationship between the minimum magnetic energy state and power loss in the windings. The technique can make current much more evenly distributed within transformer windings than is possible with existing techniques. The technique can greatly reduce transformer winding power loss, improve transformer energy efficiency, improve transformer reliability, reduce transformer cost and improve transformer power density. The technique can also be applied to other magnetic components. Transformers and magnetic components are widely used in many electronics and electrical application areas such as consumer electronics, industry products and transportation systems. Thus this technique is expected to bring significant scientific and economic impacts to society. The education plan educates electrical engineering students and promotes diversity.The goal of this research is to develop a novel transformer winding design technique to minimize power loss in transformer windings. The researchers will investigate the minimum magnetic energy state in transformer windings, explore the relationship between the minimum magnetic energy state and winding current distribution and develop a technique to find desired winding current or magnetomotive force (MMF) profiles to minimize transformer winding power loss. The relationship between the winding power loss and magnetic energy windings will be first investigated. The PI has previously found that skin and proximity effects which influence the current distribution within winding conductors and the current sharing among parallel winding conductors comply with the minimum magnetic energy theory. The relationship between the minimum magnetic energy state and the winding current distribution or sharing in high frequency transformer windings will be investigated. A technique to achieve the minimum winding power loss by minimizing the magnetic energy among windings will be explored. A method to solve for the desired MMF profile using the minimum magnetic energy model will be developed. A technique to implement the desired MMF to either series or parallel winding turns will be studied. The theory and techniques to be developed in the research activity can be applied to any transformers and to magnetic component design in many applications. Compared with conventional extensive finite element analysis (FEA) or experiment-based trial-and-error winding design methods, the research can reveal the fundamentals of the winding current distribution and sharing in high frequency transformers. The method should be capable of quickly and directly find the best transformer winding design with the lowest winding power loss. The method should also provide useful guidance in transformer winding design. The methodology will not only help designers understand the current distribution and sharing within transformer windings but also give designers capability to steer the currents within transformer windings based on the desired current sharing profiles. With this technique, the transformer's power losses in windings can be greatly reduced and its power density can be greatly improved. Preliminary research shows that compared with conventional fully interleaved winding structure, 33-41.5% winding power loss reduction should be achievable using the theory and techniques to be developed.
当电流流过传统的变压器绕组时,电流不会均匀分布在绕组中。在电流具有高浓度并且在电流具有低浓度的情况下,产生高绕力功率损耗。高电流浓度会产生高绕力功率损失,从而导致能量转换效率降低和高温。高温会降低变压器的寿命,因此必须在变压器设计中使用更多的绕组以减少功率损失。结果,变压器笨重而沉重,可以提高变压器成本,无法满足当今对高度紧凑的设计的需求。这项研究为这个问题提供了基本解决方案。研究人员先于最初发现变压器绕组中的电流分布始终达到最小磁能状态。基于这一发现,正在使用最小磁能状态与绕组中的功率损耗之间的关系开发出一种新型的变压器绕组设计技术。与现有技术相比,该技术可以使当前电流在变压器绕组中的分布更加均匀。该技术可以大大减少变压器绕组功率损失,提高变压器能源效率,提高变压器的可靠性,降低变压器成本并改善变压器功率密度。该技术也可以应用于其他磁性组件。变压器和磁性组件广泛用于许多电子设备和电气应用领域,例如消费电子,行业产品和运输系统。因此,预计该技术将为社会带来重大的科学和经济影响。教育计划教育电气工程专业的学生并促进多样性。这项研究的目的是开发一种新颖的变压器绕组设计技术,以最大程度地减少变压器绕组的功率损失。 研究人员将研究变压器绕组中的最小磁能状态,探索最小磁能状态与绕线电流分布之间的关系,并开发一种技术以找到所需的绕组电流或磁极磁力(MMF)曲线,以最大程度地减少变压器绕组功率损失。 首先研究绕组功率损失与磁能绕组之间的关系。 PI先前已经发现,会影响绕组导体内电流分布以及平行绕组导体之间的电流共享的皮肤和接近性效应符合最小磁能理论。将研究最小磁能状态与绕组电流分布或在高频变压器绕组中的共享之间的关系。将探索一种通过最小化绕组之间的磁能来实现最小绕组功率损失的技术。将开发一种使用最小磁能模型来解决所需MMF轮廓的方法。将研究一种将所需的MMF实现为系列或平行绕组转弯的技术。在研究活动中要开发的理论和技术可以应用于许多应用程序中的任何变压器和磁成分设计。与常规的广泛有限元分析(FEA)或基于实验的试验和绕组设计方法相比,该研究可以揭示绕组电流分布和以高频变压器共享的基础。该方法应能够快速,直接找到最佳的变压器绕组设计,并具有最低的绕组功率损失。该方法还应在变压器绕组设计中提供有用的指导。该方法不仅将帮助设计师了解变压器绕组中的当前分布和共享,而且还使设计人员能够根据所需的当前共享概况在变压器绕组中引导电流。有了这项技术,可以大大降低绕组中变压器的功率损失,并且可以大大提高其功率密度。初步研究表明,与常规完全交织的绕组结构相比,使用要开发的理论和技术应可以实现33-41.5%的绕组功率损失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuo Wang其他文献
Aspirin does not Affect the Hematoma Volume and Growth in Severe Spontaneous Intracranial Hematoma
阿司匹林不影响严重自发性颅内血肿的血肿体积和生长
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Junhua Yang;Kaiwen Wang;Shaohua Mo;Qingyuan Liu;Jun Wu;Shuzhe Yang;Rui Guo;Yi Yang;Jiaming Zhang;Yang Liu;Pengjun Jiang;Yong Cao;Shuo Wang - 通讯作者:
Shuo Wang
Examination of the possibility of analysis of trans-fatty acid content in frying oil by measuring the fried potatoes with near infrared spectroscopy
通过近红外光谱法测量炸土豆来检验分析煎炸油中反式脂肪酸含量的可能性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jie Yu Chen;Shuo Wang;Xiaofang Liu;Eitaro Masui;Yelian Miao and Han Zhang - 通讯作者:
Yelian Miao and Han Zhang
C6orf15 acts as a potential novel marker of adverse pathological features and prognosis for colon cancer.
C6orf15 是结肠癌不良病理特征和预后的潜在新标志物。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
X. Xiong;Shuo Wang;Zhidong Gao;Y. Ye - 通讯作者:
Y. Ye
Coarse Semantic-Based Motion Removal for Robust Mapping in Dynamic Environments
基于粗略语义的运动去除,用于动态环境中的鲁棒映射
- DOI:
10.1109/access.2020.2989317 - 发表时间:
2020-04 - 期刊:
- 影响因子:3.9
- 作者:
Shuo Wang;Xudong Lv;Junbao Li;Dong Ye - 通讯作者:
Dong Ye
Growth of MoSe2 nanosheets with small size and expanded spaces of (002) plane on the surfaces of porous N-doped carbon nanotubes for hydrogen production
在多孔氮掺杂碳纳米管表面生长小尺寸和扩大(002)面空间的MoSe2纳米片用于制氢
- DOI:
10.1039/c6nr04619c - 发表时间:
2016 - 期刊:
- 影响因子:6.7
- 作者:
Bin Qu;Chunyan Li;Chunling Zhu;Shuo Wang;Xitian Zhang;Yujin Chen - 通讯作者:
Yujin Chen
Shuo Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuo Wang', 18)}}的其他基金
Adaptive Multi-Source Transfer Learning Approaches for Environmental Challenges
应对环境挑战的自适应多源迁移学习方法
- 批准号:
EP/Y002539/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
CAREER: A Multi-layer Dynamic Network Control for Agile, Optimized, and Sustainable Supply Chains
事业:敏捷、优化和可持续供应链的多层动态网络控制
- 批准号:
2238269 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Advanced Electromagnetic Analysis and High-frequency Impedance Design for Magnetic Ferrite Inductors and Transformers
适用于磁性铁氧体电感器和变压器的先进电磁分析和高频阻抗设计
- 批准号:
2322529 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: S3-IoT: Design and Deployment of Scalable, Secure, and Smart Mission-Critical IoT Systems
协作研究:PPoSS:规划:S3-IoT:可扩展、安全和智能的关键任务物联网系统的设计和部署
- 批准号:
2028897 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SaTC: EDU: Collaborative: Building a Low-cost and State-of-the-art IoT Security Hands-on Laboratory
SaTC:EDU:协作:建立低成本且最先进的物联网安全实践实验室
- 批准号:
1916175 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SaTC: TTP: Medium: Collaborative: RESULTS: Reverse Engineering Solutions on Ubiquitous Logic for Trustworthiness and Security
SaTC:TTP:媒介:协作:结果:针对可信性和安全性的普适逻辑的逆向工程解决方案
- 批准号:
1812071 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CPS: Medium: Security Certification of Autonomous Cyber-Physical Systems
CPS:中:自主网络物理系统的安全认证
- 批准号:
1818500 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Megawatt Electric Vehicle Superfast Charging Stations with Enhanced Grid Support Functionality as Energy Hubs
职业:具有增强电网支持功能的兆瓦级电动汽车超快速充电站作为能源中心
- 批准号:
1540118 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Megawatt Electric Vehicle Superfast Charging Stations with Enhanced Grid Support Functionality as Energy Hubs
职业:具有增强电网支持功能的兆瓦级电动汽车超快速充电站作为能源中心
- 批准号:
1151126 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
考虑变压器关键结构的绕组集总等效网络参数反演机理与方法研究
- 批准号:52307180
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑磁-结构耦合双向作用的变压器外部短路绕组形变动态过程研究
- 批准号:52277142
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
大型电力变压器宽频特性以及基于系统暂态信号的绕组机械损伤在线诊断新方法研究
- 批准号:52207165
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
变压器绕组变形振动信息在线辨识与综合评估方法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
变压器绕组变形振动信息在线辨识与综合评估方法研究
- 批准号:52107157
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Transformerを用いた多次元時系列データの異常予兆検知
使用 Transformer 检测多维时间序列数据中的异常符号
- 批准号:
24K20777 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Transformerに基づくインテリジェント無線通信システム
基于Transformer的智能无线通信系统
- 批准号:
24K00888 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
主体的学びを促すICEモデルに基づく大学授業設計手法のTransformerを用いた実践開発
使用 Transformer 进行实际开发,Transformer 是一种基于 ICE 模型的大学课程设计方法,可促进自主学习
- 批准号:
24K06137 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures
RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符
- 批准号:
2327168 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
- 批准号:
2403074 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant