High Frequency Transformer Winding Power Loss Reduction
减少高频变压器绕组功率损耗
基本信息
- 批准号:1611048
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When electrical current flows through conventional transformer windings, the current is not evenly distributed within the windings. High winding power losses are generated where the current has high concentration and the winding is not fully utilized where the current has low concentration. High current concentration generates high winding power loss which leads to reduced energy conversion efficiency and high temperature. High temperature reduces transformer lifetime, so more windings must be used in transformer design to reduce power loss. As a result, transformers are bulky and heavy which increases transformer cost and cannot meet today's demand for highly compact designs. This research pursues a fundamental solution to this problem. It has been preliminarily discovered by the investigator that the current distribution within transformer windings always reaches a minimum magnetic energy state. Based on this discovery, a novel transformer winding design technique is being developed using the relationship between the minimum magnetic energy state and power loss in the windings. The technique can make current much more evenly distributed within transformer windings than is possible with existing techniques. The technique can greatly reduce transformer winding power loss, improve transformer energy efficiency, improve transformer reliability, reduce transformer cost and improve transformer power density. The technique can also be applied to other magnetic components. Transformers and magnetic components are widely used in many electronics and electrical application areas such as consumer electronics, industry products and transportation systems. Thus this technique is expected to bring significant scientific and economic impacts to society. The education plan educates electrical engineering students and promotes diversity.The goal of this research is to develop a novel transformer winding design technique to minimize power loss in transformer windings. The researchers will investigate the minimum magnetic energy state in transformer windings, explore the relationship between the minimum magnetic energy state and winding current distribution and develop a technique to find desired winding current or magnetomotive force (MMF) profiles to minimize transformer winding power loss. The relationship between the winding power loss and magnetic energy windings will be first investigated. The PI has previously found that skin and proximity effects which influence the current distribution within winding conductors and the current sharing among parallel winding conductors comply with the minimum magnetic energy theory. The relationship between the minimum magnetic energy state and the winding current distribution or sharing in high frequency transformer windings will be investigated. A technique to achieve the minimum winding power loss by minimizing the magnetic energy among windings will be explored. A method to solve for the desired MMF profile using the minimum magnetic energy model will be developed. A technique to implement the desired MMF to either series or parallel winding turns will be studied. The theory and techniques to be developed in the research activity can be applied to any transformers and to magnetic component design in many applications. Compared with conventional extensive finite element analysis (FEA) or experiment-based trial-and-error winding design methods, the research can reveal the fundamentals of the winding current distribution and sharing in high frequency transformers. The method should be capable of quickly and directly find the best transformer winding design with the lowest winding power loss. The method should also provide useful guidance in transformer winding design. The methodology will not only help designers understand the current distribution and sharing within transformer windings but also give designers capability to steer the currents within transformer windings based on the desired current sharing profiles. With this technique, the transformer's power losses in windings can be greatly reduced and its power density can be greatly improved. Preliminary research shows that compared with conventional fully interleaved winding structure, 33-41.5% winding power loss reduction should be achievable using the theory and techniques to be developed.
当电流流过传统的变压器绕组时,电流在绕组内的分布并不均匀。电流集中度高的地方绕组功率损耗大,而电流集中度低的地方绕组没有得到充分利用。电流浓度高,绕组功率损耗大,导致能量转换效率降低,温度高。高温降低了变压器的使用寿命,因此在变压器设计中必须使用更多的绕组来降低功率损耗。因此,变压器体积庞大,重量大,增加了变压器成本,不能满足当今对高度紧凑设计的需求。本研究力求从根本上解决这一问题。研究者初步发现,变压器绕组内的电流分布总是达到最小磁能状态。基于这一发现,利用绕组中最小磁能状态与功率损耗之间的关系,开发了一种新的变压器绕组设计技术。该技术可以使电流比现有技术更均匀地分布在变压器绕组内。该技术可大大降低变压器绕组功率损耗,提高变压器能效,提高变压器可靠性,降低变压器成本,提高变压器功率密度。该技术也可以应用于其他磁性元件。变压器和磁性元件广泛应用于许多电子和电气应用领域,如消费电子产品,工业产品和运输系统。因此,这项技术有望为社会带来重大的科学和经济影响。教育计划教育电气工程专业的学生,促进多样性。本研究的目标是发展一种新的变压器绕组设计技术,以减少变压器绕组的功率损耗。研究人员将研究变压器绕组中的最小磁能状态,探索最小磁能状态与绕组电流分布之间的关系,并开发一种寻找所需绕组电流或磁动势(MMF)分布的技术,以最大限度地减少变压器绕组的功率损耗。首先研究绕组功率损耗与磁能绕组之间的关系。PI先前发现,影响绕组导体内部电流分布和并联绕组导体之间电流分担的趋肤效应和接近效应符合最小磁能理论。研究了高频变压器绕组中最小磁能状态与绕组电流分布或分担的关系。我们将探索一种通过使绕组之间的磁能最小化来实现最小绕组功率损耗的技术。本文将提出一种利用最小磁能模型求解所需MMF剖面的方法。将研究一种将所需的MMF实现为串联或并联绕组匝的技术。在研究活动中发展的理论和技术可以应用于任何变压器和磁性元件设计的许多应用。与传统的广泛有限元分析(FEA)或基于实验的试错绕组设计方法相比,该研究可以揭示高频变压器绕组电流分布和共享的基本原理。该方法应能够快速、直接地找到绕组损耗最小的最佳变压器绕组设计。该方法还可为变压器绕组设计提供有益的指导。该方法不仅有助于设计人员了解变压器绕组内的电流分布和共享,而且还使设计人员能够根据所需的电流共享配置文件来控制变压器绕组内的电流。采用该技术,可以大大降低变压器绕组的功率损耗,大大提高变压器的功率密度。初步研究表明,利用待开发的理论和技术,与传统的全交错绕组结构相比,绕组功率损耗可降低33-41.5%。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuo Wang其他文献
Locality-Sensitive Hashing-based Link Prediction Process on Smart Campus Education or Online Social Platform
智慧校园教育或在线社交平台上基于局部敏感哈希的链接预测过程
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Hanwen Liu;Shunmei Meng;Jun Hou;Shuo Wang;Qianmu Li;Chanying Huang - 通讯作者:
Chanying Huang
Effects of acoustic and visual stimuli on subjective preferences for different seating positions in an Italian style theater
声学和视觉刺激对意大利风格剧院不同座位位置主观偏好的影响
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Shin-ichi-sato;Shuo Wang;Yuezhe Zhao;Shuoxian Wu;Haitao Sun;Nicola Prodi;Chiara Uisentin;Roberto Pompoli - 通讯作者:
Roberto Pompoli
Coarse Semantic-Based Motion Removal for Robust Mapping in Dynamic Environments
基于粗略语义的运动去除,用于动态环境中的鲁棒映射
- DOI:
10.1109/access.2020.2989317 - 发表时间:
2020-04 - 期刊:
- 影响因子:3.9
- 作者:
Shuo Wang;Xudong Lv;Junbao Li;Dong Ye - 通讯作者:
Dong Ye
Pollution characteristics and risk assessment of polycyclic aromatic hydrocarbons in the sediment of Wei River
渭河沉积物中多环芳烃污染特征及风险评估
- DOI:
10.1007/s12665-021-09483-z - 发表时间:
2021-03 - 期刊:
- 影响因子:2.8
- 作者:
Lin Pang;Shengwei Zhang;Lijun Wang;Tao Yang;Shuo Wang - 通讯作者:
Shuo Wang
Retrogradation enthalpy does not always reflect retrogradation behavior of gelatinized starch
回生焓并不总是反映糊化淀粉的回生行为
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.6
- 作者:
Shujun Wang;Caili Li;Xiu Zhang;Les Copel;Shuo Wang - 通讯作者:
Shuo Wang
Shuo Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuo Wang', 18)}}的其他基金
Adaptive Multi-Source Transfer Learning Approaches for Environmental Challenges
应对环境挑战的自适应多源迁移学习方法
- 批准号:
EP/Y002539/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
CAREER: A Multi-layer Dynamic Network Control for Agile, Optimized, and Sustainable Supply Chains
事业:敏捷、优化和可持续供应链的多层动态网络控制
- 批准号:
2238269 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Advanced Electromagnetic Analysis and High-frequency Impedance Design for Magnetic Ferrite Inductors and Transformers
适用于磁性铁氧体电感器和变压器的先进电磁分析和高频阻抗设计
- 批准号:
2322529 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: S3-IoT: Design and Deployment of Scalable, Secure, and Smart Mission-Critical IoT Systems
协作研究:PPoSS:规划:S3-IoT:可扩展、安全和智能的关键任务物联网系统的设计和部署
- 批准号:
2028897 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SaTC: EDU: Collaborative: Building a Low-cost and State-of-the-art IoT Security Hands-on Laboratory
SaTC:EDU:协作:建立低成本且最先进的物联网安全实践实验室
- 批准号:
1916175 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SaTC: TTP: Medium: Collaborative: RESULTS: Reverse Engineering Solutions on Ubiquitous Logic for Trustworthiness and Security
SaTC:TTP:媒介:协作:结果:针对可信性和安全性的普适逻辑的逆向工程解决方案
- 批准号:
1812071 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CPS: Medium: Security Certification of Autonomous Cyber-Physical Systems
CPS:中:自主网络物理系统的安全认证
- 批准号:
1818500 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Megawatt Electric Vehicle Superfast Charging Stations with Enhanced Grid Support Functionality as Energy Hubs
职业:具有增强电网支持功能的兆瓦级电动汽车超快速充电站作为能源中心
- 批准号:
1540118 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Megawatt Electric Vehicle Superfast Charging Stations with Enhanced Grid Support Functionality as Energy Hubs
职业:具有增强电网支持功能的兆瓦级电动汽车超快速充电站作为能源中心
- 批准号:
1151126 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
基于生物学引导MRI-Transformer模型评估三阴性乳腺癌抗PD-1/PD-L1免疫治疗反应的研究
- 批准号:QN25H180017
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
建立新型Transformer架构算法提升人工智能诊断对心电图P波的定位与识别
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向Transformer大模型推理任务的加速计算关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于二维余弦卷积算子及时频
Transformer的癫痫发作检测及类型辨识
一体化方法研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于多模态Transformer的胃低级别上皮内瘤变诊断与癌变风险预测研究
- 批准号:JCZRYB202500849
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于U-net和Transformer的深度学习模型构建非增强CT急性缺血性脑卒中核心梗死区可视化分割系统
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Transformer算法下甲状旁腺消融术后疗效的超声图像预测模型构建及验证
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Transformer端到端的多模态景象匹配飞行器快速定位方法研究
- 批准号:2025JJ60407
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Transformer深度学习模型预测脑卒中取栓术后脑水肿风险
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Transformer模型的基因调控网络推断与关键调控子挖掘方法研究
- 批准号:MS25F020107
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Transformerを用いた多次元時系列データの異常予兆検知
使用 Transformer 检测多维时间序列数据中的异常符号
- 批准号:
24K20777 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Transformerに基づくインテリジェント無線通信システム
基于Transformer的智能无线通信系统
- 批准号:
24K00888 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
主体的学びを促すICEモデルに基づく大学授業設計手法のTransformerを用いた実践開発
使用 Transformer 进行实际开发,Transformer 是一种基于 ICE 模型的大学课程设计方法,可促进自主学习
- 批准号:
24K06137 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures
RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符
- 批准号:
2327168 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
- 批准号:
2403074 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
- 批准号:
2403075 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Binary Vision Transformer の専用ハードウェアに関する研究
二元视觉Transformer专用硬件研究
- 批准号:
24K02912 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Transformerのための高効率ヘテロジニアスカスタムアクセラレータ基盤
Transformer高效异构定制加速器基础
- 批准号:
24K02994 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Transformer-based Framework for Multi-objective Reinforcement Learning using Hierarchical Policies
使用分层策略的基于 Transformer 的多目标强化学习框架
- 批准号:
24K20843 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: A Solar-Powered Aerial Transformer for Enhanced Mobility and Endurance
合作研究:增强机动性和耐用性的太阳能空中变压器
- 批准号:
2334994 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant