Collaborative Research: A Roadmap Toward Terahertz Optoelectronics Using Active Control of Charge Density Waves at Degenerate Semiconductor Interfaces

合作研究:利用简并半导体界面电荷密度波的主动控制实现太赫兹光电子学的路线图

基本信息

  • 批准号:
    1611231
  • 负责人:
  • 金额:
    $ 25.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

The information revolution of the past decades has been driven by unprecedented advances in microprocessor technology and a continuous progression towards smaller, faster and more efficient electronic devices. As a result, remarkable new capabilities have been enabled across vastly different areas of human activity such as telecommunication, computation, finances, national security and space exploration. Despite this progress, the past few years has seen scaling issues associated with electronic interconnect delay times and heat dissipation result in the saturation of microprocessor clock speeds at about 3GHz. Photonic integrated circuits, being the analogue of electronic circuits but with photons substituting for electrons as the information carrier, possess an exceedingly high data-carrying capacity and have the potential to address some of the present bottlenecks in microprocessor technology. However, the dielectric waveguides and interconnects currently used in photonic circuits are limited in size by the fundamental law of diffraction, leading to dimensional mismatch between electronic and photonic components. As a result, their practical implementation in real-world devices, apart from telecommunications, has been substantially hindered. Here we propose a new data processing element, an optoelectronic switch, which assimilates the best characteristics of photonics and electronics. It has the potential to address the current information bandwidth limitations of electronic devices, while simultaneously enabling device sizes that are substantially smaller than traditional photonic elements. A significant impact of this work will be the fostering of cutting-edge research opportunities for graduate and undergraduate students, including from underrepresented groups, implementing a new teaching methodology and pursuing a broader outreach by engaging high school children with fascinating topics in math and sciences. This proposal seeks to develop a new optoelectronic device, referred to as Surface Plasmon Diode, with operation based on active control of charge-density waves propagating at heavily doped (degenerate) semiconductor interfaces. A synergy between theory and experiment will be pursued to gain insight into the complex multi-physics phenomena behind the device operation, including charge transport and recombination at high-gradient, heavily doped pn+- junctions, spatially and time dependent local permittivity variations at the semiconductor interfaces, and thermal effects due to Ohmic heating and electromagnetic energy dissipation. The experimental efforts will lead to Proof of Concept devices based on Silicon-on-Insulator and epitaxially-grown III-V semiconductor materials and compounds. Bulk material growth/fabrication and characterization will inform the theoretical modeling, which in turn will guide the fabrication and experimental characterization of the prototype. The transient response of the devices will be tested using a direct detection method (IR-detector) for modulation rates ranging from low (kHz) to moderate and high frequencies (few MHz up to 3GHz). For data rates higher than 3GHz a new on-chip electro-optical detection will be implemented. These experimental measurements, in conjunction with the theory, will establish the physical limitations and scaling laws governing the device 3dB bandwidth, and establish a clear roadmap toward direct, electro-optical signal modulation at rates down to the picosecond time scale for signal modulation surpassing -10dB and mode sizes that are substantially smaller compared to present-day optoelectronics elements. The proposed research presents a new approach toward fast optical interconnects, circuitry and logic elements and may lead to breakthrough technologies related to integrated optics and electronics, a multibillion dollar industry.
过去几十年的信息革命是由微处理器技术的空前进步和向更小、更快、更高效的电子设备的不断发展推动的。其结果是,在电信、计算、金融、国家安全和太空探索等人类活动的不同领域,都实现了非凡的新能力。尽管取得了这些进展,但在过去的几年里,与电子互连延迟时间和散热相关的缩放问题导致微处理器时钟速度在3GHz左右饱和。光子集成电路是电子电路的模拟,但以光子代替电子作为信息载体,具有极高的数据承载能力,有潜力解决目前微处理器技术的一些瓶颈。然而,目前用于光子电路的介质波导和互连受到衍射基本定律的限制,导致电子和光子元件之间的尺寸不匹配。因此,它们在现实世界设备中的实际实施,除了电信,已经大大阻碍了。本文提出了一种新的数据处理元件——光电开关,它融合了光子学和电子学的最佳特性。它有潜力解决当前电子设备的信息带宽限制,同时使设备尺寸比传统光子元件小得多。这项工作的一个重要影响将是为研究生和本科生(包括来自代表性不足的群体)提供前沿研究机会,实施一种新的教学方法,并通过让高中生参与有趣的数学和科学主题来追求更广泛的推广。本提案旨在开发一种新的光电器件,称为表面等离子体二极管,其操作基于主动控制在重掺杂(简并)半导体界面传播的电荷密度波。理论和实验之间的协同作用将被追求,以深入了解器件运行背后复杂的多物理现象,包括高梯度下的电荷输运和复合,高掺杂pn+结,半导体界面的空间和时间相关的局部介电常数变化,以及由于欧姆加热和电磁能量耗散引起的热效应。实验工作将导致基于绝缘体上硅和外延生长III-V半导体材料和化合物的概念验证设备。大块材料的生长/制造和表征将为理论建模提供信息,理论建模反过来将指导原型的制造和实验表征。器件的瞬态响应将使用直接检测方法(红外探测器)对从低(kHz)到中高频(几MHz到3GHz)的调制速率进行测试。对于高于3GHz的数据速率,将实施一种新的片上光电检测。这些实验测量,结合理论,将建立控制设备3dB带宽的物理限制和缩放规律,并建立一个明确的路线图,直接的电光信号调制速率降至皮秒时间尺度,信号调制超过-10dB,与目前的光电元件相比,模式尺寸要小得多。这项研究提出了一种快速光学互连、电路和逻辑元件的新方法,并可能导致与集成光学和电子相关的突破性技术,这是一个价值数十亿美元的产业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Wasserman其他文献

Anterior capsular tears and loop fixation of posterior chamber intraocular lenses.
前囊撕裂和后房型人工晶状体环固定。
  • DOI:
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Wasserman;David J. Apple;V. E. Castaneda;J. Tsai;Robin C. Morgan;E. Assia
  • 通讯作者:
    E. Assia
Granulomatous hepatitis associated with glyburide
  • DOI:
    10.1007/bf02093822
  • 发表时间:
    1996-02-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Daisy Saw;Ernest Pitman;Maung Maung;Panas Savasatit;Daniel Wasserman;C. K. Yeung
  • 通讯作者:
    C. K. Yeung
Loss mechanisms in mid-infrared extraordinary optical transmission gratings.
中红外非凡光传输光栅的损耗机制。
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    T. Ribaudo;B. Passmore;K. Freitas;E. Shaner;J. Cederberg;Daniel Wasserman
  • 通讯作者:
    Daniel Wasserman
InSb pixel loaded microwave resonator for high-speed mid-wave infrared detection
  • DOI:
    10.1016/j.infrared.2020.103390
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yinan Wang;Sukrith Dev;Frank Yang;Leland Nordin;Yimeng Wang;Andrew Briggs;Monica Allen;Jeffery Allen;Emanuel Tutuc;Daniel Wasserman
  • 通讯作者:
    Daniel Wasserman
Plasmon-enhanced distributed Bragg reflectors
等离子增强分布式布拉格反射器
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Morgan Bergthold;Daniel Wasserman;A. Muhowski
  • 通讯作者:
    A. Muhowski

Daniel Wasserman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Wasserman', 18)}}的其他基金

Conference: The Electronic Materials Conference
会议:电子材料会议
  • 批准号:
    2414428
  • 财政年份:
    2024
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Broadening Participation in the 2023 Electronic Materials Conference
扩大2023年电子材料会议参与范围
  • 批准号:
    2316747
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Broadening Participation in the 2022 Electronic Materials Conference
扩大2022年电子材料会议参与范围
  • 批准号:
    2219635
  • 财政年份:
    2022
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Electronic Materials Conference
电子材料会议
  • 批准号:
    2120668
  • 财政年份:
    2021
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Transforming Photonics and Electronics with Digital Alloy Materials
合作研究:DMREF:用数字合金材料改变光子学和电子学
  • 批准号:
    2119302
  • 财政年份:
    2021
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Collaborative research: Mid-IR Photonic Funnels: Coupling, emitting, and re-shaping mid-IR photons in the nano-world
合作研究:中红外光子漏斗:在纳米世界中耦合、发射和重塑中红外光子
  • 批准号:
    2004422
  • 财政年份:
    2020
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
All-Semiconductor Enhanced Efficiency Plasmonic Mid-IR Emitters
全半导体增强效率等离激元中红外发射器
  • 批准号:
    1926187
  • 财政年份:
    2019
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Intersubband transitions and devices in non-polar strain-compensated InGaN/AlGaN
合作研究:非极性应变补偿 InGaN/AlGaN 中的子带间跃迁和器件
  • 批准号:
    1810318
  • 财政年份:
    2018
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
CAREER: Mid-Infrared Quantum Dot Cascade Lasers
职业:中红外量子点级联激光器
  • 批准号:
    1711858
  • 财政年份:
    2016
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of Optoelectronic Devices for the Far-Infrared
合作研究:远红外光电器件的开发
  • 批准号:
    1609912
  • 财政年份:
    2016
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Workshop to Develop a Roadmap for Greater Public Use of Privacy-Sensitive Government Data
合作研究:制定路线图以扩大公众使用隐私敏感政府数据的研讨会
  • 批准号:
    2129970
  • 财政年份:
    2021
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
  • 批准号:
    2138770
  • 财政年份:
    2021
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Workshop to Develop a Roadmap for Greater Public Use of Privacy-Sensitive Government Data
合作研究:制定路线图以扩大公众使用隐私敏感政府数据的研讨会
  • 批准号:
    2129895
  • 财政年份:
    2021
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Workshop to Develop a Roadmap for Greater Public Use of Privacy-Sensitive Government Data
合作研究:制定路线图以扩大公众使用隐私敏感政府数据的研讨会
  • 批准号:
    2129909
  • 财政年份:
    2021
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
  • 批准号:
    2028881
  • 财政年份:
    2020
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
  • 批准号:
    2028930
  • 财政年份:
    2020
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
  • 批准号:
    2028923
  • 财政年份:
    2020
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
  • 批准号:
    2028955
  • 财政年份:
    2020
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
  • 批准号:
    2028956
  • 财政年份:
    2020
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: An Unified Learnable Roadmap for Sequential Decision Making in Relational Domains
EAGER:协作研究:关系领域顺序决策的统一可学习路线图
  • 批准号:
    1836565
  • 财政年份:
    2018
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了