All-Semiconductor Enhanced Efficiency Plasmonic Mid-IR Emitters

全半导体增强效率等离激元中红外发射器

基本信息

  • 批准号:
    1926187
  • 负责人:
  • 金额:
    $ 47.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Semiconductor light emitters, particularly lasers and light emitting diodes (LEDs), have served as the driving force for many of the most significant advances in technology over the past five decades. From the telecom lasers used in our communications networks, to the LEDs reducing energy consumption in solid state lighting applications, semiconductors offer compact, low cost, and efficient light sources for a broad range of technological advances. However, the majority of the aforementioned sources and applications lie in the visible and near-infrared portions of the electromagnetic spectrum. With a few exceptions, the longer wavelength mid-infrared (mid-IR) lacks semiconductor-based light sources of equivalent utility and efficiency, despite being a wavelength range of significant technological importance for a range of biomedical, environmental, industrial, as well as security and defense, applications. The lack of semiconductor sources in this wavelength range can largely be attributed to the intrinsic inefficiency of mid-IR optoelectronic materials, which dissipate energy more efficiently as heat than as light. The inherent inefficiency of mid-IR emitters, however, offers very real opportunities for implementing new approaches for efficiency enhancement unique to these long wavelengths. This project seeks to transform the field of mid-IR semiconductor light emitters by marrying recent advances in epitaxial materials growth, light-matter interactions, and semiconductor device architectures to develop a class of efficient semiconductor mid-IR light sources, with potential applications in infrared quantum communications, infrared sensing, thermal signaling, and biomedical imaging. Our technical efforts will be augmented by a robust K-12 outreach program, as well as sustained REU and RET mentoring.Technical: The field of plasmonics has promised a broad range of transformational advances in optics and optoelectronics, including but not limited to, on-chip sub-diffraction limited waveguiding, higher efficiency photovoltaics, sub-diffraction limit and ultra-efficient emitters, and enhanced sensitivity sensor systems. Research efforts on the above have largely focused on the near-infrared and visible wavelengths of the electromagnetic spectrum (400 nm - 3um), where efficient emitters abound, and the introduction of plasmonic materials generally results in decreased emission efficiency (even if other benefits, such as sub-wavelength confinement, are demonstrated). The mid-IR (3 - 30 um), on the other hand, is a wavelength range largely devoid of efficient emitters, where plasmonics can be leveraged to improve, not degrade, emitter efficiency. The mid-IR is also a wavelength range where high quality plasmonic materials and quantum engineered and nanostructured emitters can be grown epitaxially in the same material system. This project will utilize the highly-doped semiconductor 'metals' platform, combined with quantum engineered active regions and patterned epitaxial growth, to develop new, increased efficiency, mid-IR sources in a monolithic semiconductor platform. The project will offer transformational opportunities for fundamental investigation of light-matter interactions between quantum engineered emitters and designer plasmonic structures. At the same time, the project will look to demonstrate that plasmonics can be leveraged to realize significant improvements in mid-IR source efficiency. The ultimate goal of the project is the demonstration of the first electrically-driven all-semiconductor plasmonic/quantum-emitter sources for efficient mid-IR light emitting devices and their subsequent integration into mid-IR optical systems.The PIs have strong track records of outreach to the larger Austin community, and as part of the proposed effort will strengthen these ties with regular outreach and modular activities in K-12 classrooms. The PIs have a commitment to diversity in their research groups, and will build off of this diversity and look to recruit a talented and diverse group of students to the project, which will expose participating students to cutting edge research in crystal growth, optics, device design and materials and device characterization. The PIs will advise undergraduate students and local K12 teachers through existing summer REU and RET programs at UT.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
半导体光发射器,特别是激光器和发光二极管(LED),在过去的五十年中已经成为许多最重要的技术进步的驱动力。 从我们通信网络中使用的电信激光器,到固态照明应用中降低能耗的LED,半导体为广泛的技术进步提供了紧凑、低成本和高效的光源。 然而,上述来源和应用中的大多数位于电磁波谱的可见光和近红外部分。 除了少数例外,较长波长的中红外(中IR)缺乏具有同等效用和效率的基于半导体的光源,尽管其波长范围对于生物医学、环境、工业以及安全和国防应用的范围具有显著的技术重要性。 在这个波长范围内缺乏半导体源可以在很大程度上归因于中红外光电材料的固有效率低下,其将能量更有效地作为热而不是光耗散。 然而,中红外发射器固有的低效率为实现这些长波长特有的效率增强的新方法提供了非常真实的机会。该项目旨在通过结合外延材料生长,光-物质相互作用和半导体器件架构的最新进展来改变中红外半导体光发射器领域,以开发一类高效的半导体中红外光源,并在红外量子通信,红外传感,热信号和生物医学成像中具有潜在的应用。 我们的技术努力将通过强大的K-12推广计划以及持续的REU和RET指导来增强。技术:等离子体激元学领域已经承诺在光学和光电子学方面取得广泛的变革性进展,包括但不限于片上亚衍射极限波导,更高效率的光电子学,亚衍射极限和超高效发射器,以及增强灵敏度的传感器系统。 关于上述的研究工作主要集中在电磁光谱的近红外和可见波长(400 nm -3 um),其中有效的发射器比比皆是,并且等离子体材料的引入通常导致发射效率降低(即使证明了其他益处,例如亚波长限制)。 另一方面,中IR(3 - 30 μ m)是很大程度上缺乏有效发射器的波长范围,其中可以利用等离子体来提高而不是降低发射器效率。中红外也是高质量等离子体材料和量子工程和纳米结构发射器可以在同一材料系统中外延生长的波长范围。该项目将利用高掺杂半导体“金属”平台,结合量子工程有源区和图案化外延生长,在单片半导体平台上开发新的、效率更高的中红外光源。该项目将为量子工程发射器和设计等离子体结构之间的光-物质相互作用的基础研究提供转型机会。与此同时,该项目将寻求证明等离子体激元可以用来实现中红外光源效率的显着提高。 该项目的最终目标是展示第一个电驱动的全半导体等离子体/量子发射源,用于高效的中红外发光器件,并随后将其集成到中红外光学系统中。PI在更大的奥斯汀社区有很好的推广记录,作为拟议努力的一部分,将通过定期推广和K-12教室的模块化活动加强这些联系。PI致力于其研究小组的多样性,并将建立在这种多样性的基础上,并希望招募一批有才华和多样化的学生参加该项目,这将使参与的学生接触到晶体生长,光学,器件设计和材料以及器件表征方面的前沿研究。 PI将通过UT现有的夏季REU和RET计划为本科生和当地K12教师提供建议。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Monolithically Integrated Resonant Cavity Enhanced Type-II Superlattice Detectors
单片集成谐振腔增强型 II 型超晶格探测器
  • DOI:
    10.1364/cleo_si.2020.sth4l.6
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nordin, Leland;Kamboj, Abhilasha;Petluru, Priyanka;Yoon, Narae;Wasserman, Daniel
  • 通讯作者:
    Wasserman, Daniel
All-epitaxial guided-mode resonance mid-wave infrared detectors
  • DOI:
    10.1063/5.0047534
  • 发表时间:
    2021-05-17
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Kamboj, A.;Nordin, L.;Wasserman, D.
  • 通讯作者:
    Wasserman, D.
Interface structure and luminescence properties of epitaxial PbSe films on InAs(111)A
  • DOI:
    10.1116/6.0000774
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Haidet, Brian B.;Nordin, Leland;Mukherjee, Kunal
  • 通讯作者:
    Mukherjee, Kunal
Photoluminescence from InSb1−xBix alloys at extended wavelengths on InSb
  • DOI:
    10.1063/5.0121657
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    4
  • 作者:
    R. C. White;L. Nordin;A. Muhowski;D. Wasserman;S. R. Bank
  • 通讯作者:
    R. C. White;L. Nordin;A. Muhowski;D. Wasserman;S. R. Bank
Minority carrier lifetimes in digitally-grown, narrow-gap, AlInAsSb alloys
数字生长窄带隙 AlInAsSb 合金中的少数载流子寿命
  • DOI:
    10.1063/5.0074304
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Muhowski, A. J.;March, S. D.;Maddox, S. J.;Wasserman, D.;Bank, S. R.
  • 通讯作者:
    Bank, S. R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Wasserman其他文献

Anterior capsular tears and loop fixation of posterior chamber intraocular lenses.
前囊撕裂和后房型人工晶状体环固定。
  • DOI:
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Wasserman;David J. Apple;V. E. Castaneda;J. Tsai;Robin C. Morgan;E. Assia
  • 通讯作者:
    E. Assia
Granulomatous hepatitis associated with glyburide
  • DOI:
    10.1007/bf02093822
  • 发表时间:
    1996-02-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Daisy Saw;Ernest Pitman;Maung Maung;Panas Savasatit;Daniel Wasserman;C. K. Yeung
  • 通讯作者:
    C. K. Yeung
Loss mechanisms in mid-infrared extraordinary optical transmission gratings.
中红外非凡光传输光栅的损耗机制。
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    T. Ribaudo;B. Passmore;K. Freitas;E. Shaner;J. Cederberg;Daniel Wasserman
  • 通讯作者:
    Daniel Wasserman
InSb pixel loaded microwave resonator for high-speed mid-wave infrared detection
  • DOI:
    10.1016/j.infrared.2020.103390
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yinan Wang;Sukrith Dev;Frank Yang;Leland Nordin;Yimeng Wang;Andrew Briggs;Monica Allen;Jeffery Allen;Emanuel Tutuc;Daniel Wasserman
  • 通讯作者:
    Daniel Wasserman
Plasmon-enhanced distributed Bragg reflectors
等离子增强分布式布拉格反射器
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Morgan Bergthold;Daniel Wasserman;A. Muhowski
  • 通讯作者:
    A. Muhowski

Daniel Wasserman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Wasserman', 18)}}的其他基金

Conference: The Electronic Materials Conference
会议:电子材料会议
  • 批准号:
    2414428
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Broadening Participation in the 2023 Electronic Materials Conference
扩大2023年电子材料会议参与范围
  • 批准号:
    2316747
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Broadening Participation in the 2022 Electronic Materials Conference
扩大2022年电子材料会议参与范围
  • 批准号:
    2219635
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Electronic Materials Conference
电子材料会议
  • 批准号:
    2120668
  • 财政年份:
    2021
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Transforming Photonics and Electronics with Digital Alloy Materials
合作研究:DMREF:用数字合金材料改变光子学和电子学
  • 批准号:
    2119302
  • 财政年份:
    2021
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Collaborative research: Mid-IR Photonic Funnels: Coupling, emitting, and re-shaping mid-IR photons in the nano-world
合作研究:中红外光子漏斗:在纳米世界中耦合、发射和重塑中红外光子
  • 批准号:
    2004422
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Intersubband transitions and devices in non-polar strain-compensated InGaN/AlGaN
合作研究:非极性应变补偿 InGaN/AlGaN 中的子带间跃迁和器件
  • 批准号:
    1810318
  • 财政年份:
    2018
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
CAREER: Mid-Infrared Quantum Dot Cascade Lasers
职业:中红外量子点级联激光器
  • 批准号:
    1711858
  • 财政年份:
    2016
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of Optoelectronic Devices for the Far-Infrared
合作研究:远红外光电器件的开发
  • 批准号:
    1609912
  • 财政年份:
    2016
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Materials World Network: Collaborative Proposal: Understanding the Optical Response of Designer Epsilon Near Zero Materials
材料世界网络:协作提案:了解设计师 Epsilon 近零材料的光学响应
  • 批准号:
    1711849
  • 财政年份:
    2016
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant

相似海外基金

SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
  • 批准号:
    2335500
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Digitally Assisted Power Amplifier Design with Enhanced Energy Efficiency
具有增强能效的数字辅助功率放大器设计
  • 批准号:
    LP220200906
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Linkage Projects
CAREER: Enhanced Reliability and Efficiency of Software Regression Testing in the Presence of Flaky Tests
职业:在存在不稳定测试的情况下增强软件回归测试的可靠性和效率
  • 批准号:
    2338287
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Thermally Responsive Supports for Enhanced Efficiency in PET Depolymerisation
热响应支撑可提高 PET 解聚效率
  • 批准号:
    EP/Y003667/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Research Grant
SPEED - Speed Profiling & Enhanced Efficiency Determination
SPEED - 速度分析
  • 批准号:
    10090368
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Collaborative R&D
SBIR Phase I: Long-Range, Millimeter-Wave, Wireless Power Beaming with Enhanced Efficiency
SBIR 第一阶段:提高效率的长距离毫米波无线功率传输
  • 批准号:
    2334557
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
SBIR Phase I: Low-Cost, Vision-Enhanced, High-Efficiency Heat Cable Control System
SBIR 第一阶段:低成本、视觉增强、高效热电缆控制系统
  • 批准号:
    2224907
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Flexible and scalable digital-twin platform for enhanced production efficiency and yield in battery cell production lines - BATTwin
灵活且可扩展的数字孪生平台,可提高电池生产线的生产效率和产量 - BATTwin
  • 批准号:
    10118186
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    EU-Funded
Phenomenological Studies of Light alloys for Enhanced Efficiency, Performance and Strength of Automotive Powertrain Components for Next Generation Vehicles
轻合金现象学研究,以提高下一代汽车动力总成部件的效率、性能和强度
  • 批准号:
    RGPIN-2020-06096
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Discovery Grants Program - Individual
Enhanced Synthetic Efficiency For Molecular Complexity and Diversity
提高分子复杂性和多样性的合成效率
  • 批准号:
    DP220103714
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了