Quantum Phase Transition in one-dimensional superconductors
一维超导体中的量子相变
基本信息
- 批准号:1611421
- 负责人:
- 金额:$ 49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Abstract:The overall goal of the project is to understand how superconductivity in nanowires is affected by their geometry, material properties, and the presence of an external magnetic field. The knowledge of how these factors influence the properties of the superconducting nanowires is needed for improvement of nanowire-based single-photon detectors and for downscaling of classical and quantum superconducting circuits. The project is also important for fundamental science. Our team recently discovered that, similar to classical water-ice phase transition, nanowires also undergo a phase transition; because it occurs at zero temperature, however, it belongs to the class of quantum phase transitions (QPT). One of the primary goals of the project is to uncover the as yet unknown nature of this transition. One-dimensional systems, of which superconducting nanowires are a representative example, play a special role in physics since they often allow for easier theoretical description than their counterparts in higher dimensions. Hence the project has a potential to advance understanding physics of superconducting films and other systems where QPTs occur, such as magnetic materials, liquid crystals, and cold atomic gases. The educational component of the project includes training of students in nanofabrication and precision electrical instrumentation and service of a PI as a research adviser for undergraduate female students participating in the University of Utah ACCESS program. The public outreach includes oral and exhibit presentations on superconductivity and nanoscience, carried out both at the University of Utah and at the Natural History Museum of Utah, as a part of the NSF-funded Portal for the Public program.Technical Abstract:The team's research is focused on four problems in 1D superconductivity. (i) The experimentally determined suppression of critical temperature in superconducting nanowires is 100-fold stronger than the prediction from current theories. To resolve this problem, the team will systematically study the effect of geometrical confinement on critical temperature (by transport measurements), on superconducting gap (by tunneling), and on superfluid density (by kinetic inductance measurements) in MoGe and Al nanowires. The goal is to identify leading mechanisms of the suppression and, in collaboration with theorists, develop a correct fermionic theory for nanowires and films. (ii) Upon application of a magnetic field, MoGe nanowires undergo a quantum phase transition of yet unknown nature. To uncover the mechanism of this QPT, we will carry out transport, tunneling and kinetic inductance measurements on nanowires in a magnetic field. The combined scaling of the magnetoresistance of a series of nanowires will be used to find constraints on the scaling function. (iii) A series of nanowires with an intentionally inhomogeneous order parameter will be fabricated and studied. The objective is to create a system where the physics of the QPT is strongly dominated by bosonic processes (phase slips). (iv) A high-frequency technique capable of the detection of individual phase slips will be developed. The goal is to probe the regime of ultra-low phase slip rate (down to 1 Hz) and verify if there exist temporal correlations caused by phase-slip/anti-phase-slip interactions and/or by phase-slip avalanches.
非技术摘要:该项目的总体目标是了解纳米线中的超导电性如何受到它们的几何形状、材料性质和外部磁场的存在的影响。了解这些因素如何影响超导纳米线的性质,是改进纳米线基单光子探测器以及缩小经典和量子超导电路规模所必需的。该项目对基础科学也很重要。我们的团队最近发现,与经典的水-冰相变类似,纳米线也经历了相变;然而,由于它发生在零温度,它属于量子相变(QPT)的一类。该项目的主要目标之一是揭示这一过渡尚不为人所知的本质。一维系统在物理学中扮演着特殊的角色,超导纳米线是其中的一个典型例子,因为它们往往比高维系统的对应系统更容易进行理论描述。因此,该项目有可能促进对超导薄膜和其他发生QPT的系统的物理理解,如磁性材料、液晶和冷原子气体。该项目的教育部分包括对学生进行纳米制造和精密电子仪器方面的培训,以及为参加犹他大学入学方案的本科生担任研究顾问。公众宣传包括在犹他大学和犹他州自然历史博物馆进行的关于超导和纳米科学的口头和展览演示,这是NSF资助的公共门户计划的一部分。技术摘要:该团队的研究集中在一维超导的四个问题上。(I)实验确定的对超导纳米线临界温度的抑制比目前理论预测的要强100倍。为了解决这个问题,该团队将系统地研究几何限制对MOGE和Al纳米线的临界温度(通过输运测量)、超导带隙(通过隧道传输)和超流密度(通过动力学电感测量)的影响。目标是确定抑制的主要机制,并与理论家合作,为纳米线和薄膜开发正确的费米子理论。(Ii)在磁场作用下,MOGe纳米线经历了性质尚不清楚的量子相变。为了揭示这种QPT的机制,我们将在磁场中对纳米线进行输运、隧穿和动力学电感测量。一系列纳米线的磁阻的组合标度将被用来寻找标度函数的约束条件。(Iii)将制备和研究一系列故意不均匀有序参数的纳米线。我们的目标是创建一个系统,其中QPT的物理过程强烈地被玻色子过程(相移)所主导。(4)将开发一种能够检测单个相移的高频技术。其目的是探索超低相位滑移率(低至1赫兹)的区域,并验证是否存在由相滑/反相滑相互作用和/或相滑雪崩引起的时间相关性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrey Rogachev其他文献
Quantum phase transitions in quantum Hall and other topological systems: role of the Planckian time
- DOI:
- 发表时间:
2023-09 - 期刊:
- 影响因子:3.7
- 作者:
Andrey Rogachev - 通讯作者:
Andrey Rogachev
Microscopic scale of quantum phase transitions: from doped semiconductors to spin chains, cold gases and moir\'e superlattices
- DOI:
- 发表时间:
2023-09 - 期刊:
- 影响因子:0
- 作者:
Andrey Rogachev - 通讯作者:
Andrey Rogachev
Structural aspects of RimP binding on small ribosomal subunit from emStaphylococcus aureus/em
来自金黄色葡萄球菌的小核糖体亚基上RimP结合的结构特征
- DOI:
10.1016/j.str.2023.10.014 - 发表时间:
2024-01-04 - 期刊:
- 影响因子:4.300
- 作者:
Nataliia Garaeva;Bulat Fatkhullin;Fadis Murzakhanov;Marat Gafurov;Alexander Golubev;Aydar Bikmullin;Maxim Glazyrin;Bruno Kieffer;Lasse Jenner;Vladimir Klochkov;Albert Aganov;Andrey Rogachev;Oleksandr Ivankov;Shamil Validov;Marat Yusupov;Konstantin Usachev - 通讯作者:
Konstantin Usachev
Exploring the potential of a bioassembler for protein crystallization in space
探索生物组装器在太空进行蛋白质结晶的潜力
- DOI:
10.1038/s41526-025-00477-w - 发表时间:
2025-06-14 - 期刊:
- 影响因子:4.100
- 作者:
Christopher MacCarthy;Elizaveta Koudan;Mikhail Shevtsov;Vladislav Parfenov;Stanislav Petrov;Aleksandr Levin;Fedor Senatov;Nina Sykilinda;Sergey Ostrovskiy;Stanislav Pekov;Ivan Gushchin;Igor Popov;Egor Zinovev;Andrey Bogorodskiy;Alexey Mishin;Valentin Ivanovich;Andrey Rogachev;Yusef Khesuani;Valentin Borshchevskiy - 通讯作者:
Valentin Borshchevskiy
Andrey Rogachev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrey Rogachev', 18)}}的其他基金
EAGER: SUPER: Search for high-temperature superconductivity in heterostructured two-dimensional organic materials
EAGER:SUPER:寻找异质结构二维有机材料的高温超导性
- 批准号:
2133014 - 财政年份:2021
- 资助金额:
$ 49万 - 项目类别:
Continuing Grant
Quantum Phase Transition in Superconducting Nanowires and Films
超导纳米线和薄膜中的量子相变
- 批准号:
1904221 - 财政年份:2019
- 资助金额:
$ 49万 - 项目类别:
Continuing Grant
CAREER: Quantum Tunneling in Superconducting and Ferromagnetic Nanoscale Structures
职业:超导和铁磁纳米结构中的量子隧道
- 批准号:
0955484 - 财政年份:2010
- 资助金额:
$ 49万 - 项目类别:
Continuing Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
Microscopic study of quantum phase transition on atomic-layer superconductors
原子层超导体量子相变的微观研究
- 批准号:
22KJ0920 - 财政年份:2023
- 资助金额:
$ 49万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Novel Quantum Phenomena in 2D Helium with Aspects of Quantum Phase Transition
二维氦中新的量子现象与量子相变
- 批准号:
20H00132 - 财政年份:2020
- 资助金额:
$ 49万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Experimental study on the magnetic field-driven quantum phase transition in triangular lattice antiferromagnets with easy-plane anisotropy
易平面各向异性三角晶格反铁磁体磁场驱动量子相变实验研究
- 批准号:
20J22215 - 财政年份:2020
- 资助金额:
$ 49万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Spectroscopic study of electronic structures and quantum phase transition in 5d transition metal compounds
5d 过渡金属化合物电子结构和量子相变的光谱研究
- 批准号:
19K03753 - 财政年份:2019
- 资助金额:
$ 49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure of nuclei and atoms with high isospin - Study of quantum phase transition -
高同位旋原子核和原子的结构 - 量子相变研究 -
- 批准号:
19H01926 - 财政年份:2019
- 资助金额:
$ 49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum Phase Transition in Superconducting Nanowires and Films
超导纳米线和薄膜中的量子相变
- 批准号:
1904221 - 财政年份:2019
- 资助金额:
$ 49万 - 项目类别:
Continuing Grant
Study of nonequilibrium dynamics of integrable quantum systems in association with the relaxation of isolated quantum systems and the dynamical quantum phase transition of the many-body localization
可积量子系统的非平衡动力学研究与孤立量子系统的弛豫和多体局域化的动态量子相变相关
- 批准号:
18K03450 - 财政年份:2018
- 资助金额:
$ 49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum phase transition in topological insulators induced by coherent surface phonons
相干表面声子引起的拓扑绝缘体中的量子相变
- 批准号:
17H02908 - 财政年份:2017
- 资助金额:
$ 49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Application of deep learning to the quantum phase transition in random electron systems
深度学习在随机电子系统量子相变中的应用
- 批准号:
17K18763 - 财政年份:2017
- 资助金额:
$ 49万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Conformal bootstrap and chiral phase transition in quantum chromodynamics
量子色动力学中的共形自举和手性相变
- 批准号:
17K14301 - 财政年份:2017
- 资助金额:
$ 49万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




