CAREER: Quantum Tunneling in Superconducting and Ferromagnetic Nanoscale Structures
职业:超导和铁磁纳米结构中的量子隧道
基本信息
- 批准号:0955484
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-02-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
****NON-TECHNICAL ABSTRACT**** This Faculty Early CAREER award supports a project with an objective to develop detailed understanding of quantum phenomena in one-dimensional (1D) superconducting wires and in one and zero-dimensional ferromagnetic structures. The project is directly motivated by prospects of incorporating new physics that emerges at the nanoscale into the design of better, more functional materials and devices. Specifically, the unique ability of one-dimensional superconductors to sustain high magnetic fields could be utilized in the design of more compact superconducting magnets and would result in more efficient transmission and distribution of electric power. Detailed understanding of the physics of 1D-superconductors could provide new methods of controlling and, in fact, enhancing superconductivity at the nanoscale, for example by coupling to a dissipative environment. The outcome of the study on the ferromagnetic structures may influence practical applications in magnetic recording. Graduate and undergraduate students will be involved in an exciting multi-disciplinary research that covers physics, material sciences, nanotechnology and electrical engineering. Small projects will be also offered to local high school science teachers and high school students who will be involved in summer research on magnetism. A new undergraduate course ?Physics Core of Modern Technology and Life Science? will be developed. The course will reinforce the core knowledge of electromagnetism, quantum mechanics and statistical mechanics with carefully selected examples of technologically important devices and structures.****TECHNICAL ABSTRACT****This Faculty Early CAREER award supports a project with an objective to develop detailed understanding of quantum phenomena in one-dimensional superconducting wires and in one and zero-dimensional ferromagnetic structures. The project is directly motivated by prospects of incorporating new physics that emerges at the nanoscale into the design of better, more functional materials and devices. The mechanism of superconductor-insulator transition in 1D nanowires will be investigated by continuously driving the transition across the critical regime with a magnetic field. A high sampling-rate technique for detection of individual phase slips will be developed and temporal correlations between thermal and quantum phase slips will be studied. The effect of dissipation on quantum phase slips will be elucidated by varying the electromagnetic environment of a wire. A series of homogeneous ferromagnetic nanowires will be fabricated by depositing cobalt, permalloy and rare earth magnetic alloys on top of suspended insulated carbon nanotubes. The wires will be used to test properties of extremely constrained magnetic domain walls. Low temperature transport measurements will be carried out in search for quantum nucleation and quantum depinning of domain walls in these wires. Graduate and undergraduate students will be involved in an exciting multi-disciplinary research that covers physics, material sciences, nanotechnology and electrical engineering. Small projects will be also offered to local high school science teachers and high school students who will be involved in summer research on magnetism. A new undergraduate course will reinforce the core knowledge of electromagnetism, quantum mechanics and statistical mechanics with carefully selected examples of technologically important devices and structures.
* 非技术摘要 * 该学院早期职业奖支持一个项目,其目标是详细了解一维(1D)超导导线以及一维和零维铁磁结构中的量子现象。该项目的直接动机是将纳米级出现的新物理学纳入更好,功能更强的材料和设备的设计中。具体而言,一维超导体维持高磁场的独特能力可以用于设计更紧凑的超导磁体,并将导致更有效的电力传输和分配。 对一维超导体物理学的详细了解可以提供控制的新方法,事实上,可以通过耦合到耗散环境来增强纳米级的超导性。对铁磁结构的研究结果可能会影响磁记录的实际应用。研究生和本科生将参与一个令人兴奋的多学科研究,涵盖物理学,材料科学,纳米技术和电气工程。小型项目也将提供给当地高中科学教师和高中学生谁将参与夏季研究磁性。一门新的本科课程?现代技术与生命科学的物理学核心将被开发。本课程将加强电磁学,量子力学和统计力学的核心知识,并精心挑选技术上重要的设备和结构的例子。技术摘要 * 该学院早期职业奖支持一个项目,其目标是详细了解一维超导导线和一维和零维铁磁结构中的量子现象。该项目的直接动机是将纳米级出现的新物理学纳入更好,功能更强的材料和设备的设计中。一维纳米线的超导体-绝缘体转变的机制将通过连续驱动的临界区与磁场的过渡进行研究。一个高采样率的技术,用于检测个人的相位滑移将开发和时间之间的相关性热和量子相位滑移将进行研究。耗散对量子相位滑移的影响将通过改变导线的电磁环境来阐明。通过在悬浮的绝缘碳纳米管上沉积钴、坡莫合金和稀土磁性合金,可以制备出一系列均匀的铁磁纳米线。该导线将用于测试极端受限磁畴壁的性能。低温输运测量将进行在这些线中的畴壁的量子成核和量子脱钉搜索。研究生和本科生将参与一个令人兴奋的多学科研究,涵盖物理学,材料科学,纳米技术和电气工程。小型项目也将提供给当地高中科学教师和高中学生谁将参与夏季研究磁性。一个新的本科课程将加强电磁学,量子力学和统计力学的核心知识,精心挑选的技术重要的设备和结构的例子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrey Rogachev其他文献
Quantum phase transitions in quantum Hall and other topological systems: role of the Planckian time
- DOI:
- 发表时间:
2023-09 - 期刊:
- 影响因子:3.7
- 作者:
Andrey Rogachev - 通讯作者:
Andrey Rogachev
Microscopic scale of quantum phase transitions: from doped semiconductors to spin chains, cold gases and moir\'e superlattices
- DOI:
- 发表时间:
2023-09 - 期刊:
- 影响因子:0
- 作者:
Andrey Rogachev - 通讯作者:
Andrey Rogachev
Structural aspects of RimP binding on small ribosomal subunit from emStaphylococcus aureus/em
来自金黄色葡萄球菌的小核糖体亚基上RimP结合的结构特征
- DOI:
10.1016/j.str.2023.10.014 - 发表时间:
2024-01-04 - 期刊:
- 影响因子:4.300
- 作者:
Nataliia Garaeva;Bulat Fatkhullin;Fadis Murzakhanov;Marat Gafurov;Alexander Golubev;Aydar Bikmullin;Maxim Glazyrin;Bruno Kieffer;Lasse Jenner;Vladimir Klochkov;Albert Aganov;Andrey Rogachev;Oleksandr Ivankov;Shamil Validov;Marat Yusupov;Konstantin Usachev - 通讯作者:
Konstantin Usachev
Exploring the potential of a bioassembler for protein crystallization in space
探索生物组装器在太空进行蛋白质结晶的潜力
- DOI:
10.1038/s41526-025-00477-w - 发表时间:
2025-06-14 - 期刊:
- 影响因子:4.100
- 作者:
Christopher MacCarthy;Elizaveta Koudan;Mikhail Shevtsov;Vladislav Parfenov;Stanislav Petrov;Aleksandr Levin;Fedor Senatov;Nina Sykilinda;Sergey Ostrovskiy;Stanislav Pekov;Ivan Gushchin;Igor Popov;Egor Zinovev;Andrey Bogorodskiy;Alexey Mishin;Valentin Ivanovich;Andrey Rogachev;Yusef Khesuani;Valentin Borshchevskiy - 通讯作者:
Valentin Borshchevskiy
Andrey Rogachev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrey Rogachev', 18)}}的其他基金
EAGER: SUPER: Search for high-temperature superconductivity in heterostructured two-dimensional organic materials
EAGER:SUPER:寻找异质结构二维有机材料的高温超导性
- 批准号:
2133014 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Quantum Phase Transition in Superconducting Nanowires and Films
超导纳米线和薄膜中的量子相变
- 批准号:
1904221 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Quantum Phase Transition in one-dimensional superconductors
一维超导体中的量子相变
- 批准号:
1611421 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Development of Quantum Magnetic Tunneling Junction Sensor Arrays for Brain Magnetoencephalography (MEG) under Natural Settings
自然环境下脑磁图 (MEG) 量子磁隧道结传感器阵列的开发
- 批准号:
10723802 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
EAGER: Exploiting Quantum Tunneling for Zero Side-Channel Key Generation and Distribution
EAGER:利用量子隧道实现零侧信道密钥生成和分发
- 批准号:
2237004 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Energy-Efficient Persistent Learning-in-Memory with Quantum Tunneling Dynamic Synapses
合作研究:FET:中:具有量子隧道动态突触的节能持久内存学习
- 批准号:
2208771 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Development of resonant-tunneling Mott transistor based on double quantum well structures of strongly correlated oxides.
开发基于强相关氧化物双量子阱结构的谐振隧道莫特晶体管。
- 批准号:
22H01948 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2314687 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Quantum Charge Tunneling through Self-Assembled Monolayers (SAMs)
通过自组装单层 (SAM) 的量子电荷隧道
- 批准号:
2203621 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Energy-Efficient Persistent Learning-in-Memory with Quantum Tunneling Dynamic Synapses
合作研究:FET:中:具有量子隧道动态突触的节能持久内存学习
- 批准号:
2208770 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2037565 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Exploring tunable magnet/superconductor hybrid quantum systems via scanning tunneling microscopy
通过扫描隧道显微镜探索可调磁体/超导体混合量子系统
- 批准号:
459025680 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Research Grants














{{item.name}}会员




