NSF/DMR-BSF: Stochastic Electronic Structure Approaches Applied to Study Low-Dimensional Black-Phosphorene Systems

NSF/DMR-BSF:应用于研究低维黑磷烯系统的随机电子结构方法

基本信息

  • 批准号:
    1611382
  • 负责人:
  • 金额:
    $ 51.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThe National Science Foundation and the United States -- Israel Binational Science Foundation (BSF) jointly support this collaboration between a US-based researcher and an Israel-based researcher. The NSF Divisions of Materials Research and Chemistry fund this award jointly. The award supports computational research and education on the mechanical and electronic properties of black phosphorene. Black phosphorene is a material composed of elemental phosphorous that has been discovered and synthesized only recently. It is very similar to graphene, it forms a two-dimensional sheet, but it offers a significant advantage in that it behaves as a semiconductor: it exhibits a sizeable energy gap while supporting at the same time high-mobility charge carriers. In addition, it turns out that the electronic properties of black phosphorene can be readily tuned by applying mechanical stress and other methods. Therefore, just as silicon emerged as an ideal material for three-dimensional electronics, black phosphorene seems to emerge as the ideal infrastructure material for two-dimensional electronics technology. The principal goal of this project is to study, understand, and eventually predict the properties of black phosphorene and its derivatives using theoretical and computational methods. Because of the way two-dimensional black phosphorene responds to mechanical stresses and to chemical perturbations, studying its properties using conventional computational methods is a highly challenging task, requiring the simulation of exceedingly large systems. Therefore, the first challenge the project will need to overcome is to build a computational tool that tackles large electronic systems containing thousands of atoms, and apply it to the study of black phosphorene. This challenge can be met by using methodologies developed by the PIs that can generally be described as stochastic computational techniques. These approaches are akin to statistical methods used in polling, and make it possible to accurately simulate material properties for much larger systems than is possible with traditional, non-stochastic approaches. Once the tools are developed, the PIs will use them to study realistic two-dimensional black-phosphorene sheets, providing a theoretical framework for fundamental understanding and for guiding future experiments on this material.The theoretical tools developed and used in this project will be made available to the community, with an aim to increase access to the developed methodology. The educational component of the project emphasizes the use of computational tools relevant for the research for the training and education of graduate students and postdoctoral fellows. Undergraduate and high school students will be involved in the research, especially in the running of large-scale simulations. All will benefit from close interactions with the Israeli collaborators.TECHNICAL SUMMARYThe National Science Foundation and the United States -- Israel Binational Science Foundation (BSF) jointly support this collaboration between a US-based researcher and an Israel-based researcher. The NSF Divisions of Materials Research and Chemistry fund this award jointly. The award supports computational research and education on the mechanical and electronic properties of black phosphorene. Traditional large-scale simulations of these properties are prohibitively expensive either for accurate density functional theory with exact exchange (DFT), or for highly accurate electronic structure methods based on Green's function (GW). This project will explore hitherto inaccessible regimes using the stochastic formulations of traditional DFT and GW. The stochastic formulations replace some, or all of the multitude of summations over orbitals inherent in electronics structure methods with a stochastic sampling of combinations of these orbitals. The stochastic approaches are designed to calculate from first principles the atomic and electronic structure of systems containing 10,000 atoms or more. Sizes of that magnitude are necessary for establishing realistic environments, which enable the study of anisotropic properties. Such capability allows the construction of a theoretical framework for fundamental understanding of black phosphorene, which in turn will help in guiding experiments and synthetic efforts by pointing out possible directions to achieve desired properties. The unique ability to accurately simulate large black-phosphorene systems allows the exploration of electronic structure under a variety of experimental conditions, which include temperature, strain, and optical excitation. Using a combination of stochastic DFT and Langevin dynamics, the structure and phonon dispersion curves of large, layered black-phosphorene nanoribbons and nanotubes will be investigated, with and without mechanical stress. The structure of defects and adsorbates on the surface and perimeters will be studied as well.The theoretical tools developed and used in this project will be made available to the community, with an aim to increase access to the developed methodology. The educational component of the project emphasizes the use of computational tools relevant for the research for the training and education of graduate students and postdoctoral fellows. Undergraduate and high school students will be involved in the research, especially in the running of large-scale simulations. All will benefit from close interactions with the Israeli collaborators.
非技术摘要国家科学基金会和美国-以色列两国科学基金会(BSF)共同支持美国研究人员和以色列研究人员之间的这项合作。NSF材料研究和化学部门共同资助了该奖项。该奖项支持有关黑磷烯的机械和电子性质的计算研究和教育。黑磷烯是一种由元素磷组成的材料,最近才被发现和合成。它非常类似于石墨烯,它形成二维薄片,但它提供了一个显着的优势,因为它表现为半导体:它表现出相当大的能隙,同时支持高迁移率的电荷载流子。此外,事实证明,黑色磷烯的电子性质可以很容易地通过施加机械应力和其他方法进行调节。因此,正如硅作为三维电子技术的理想材料出现一样,黑磷烯似乎也成为二维电子技术的理想基础设施材料。该项目的主要目标是研究,理解,并最终预测黑磷烯及其衍生物的性质,使用理论和计算方法。由于二维黑色磷烯对机械应力和化学扰动的反应方式,使用传统的计算方法研究其性质是一项极具挑战性的任务,需要模拟非常大的系统。因此,该项目需要克服的第一个挑战是建立一个计算工具,处理包含数千个原子的大型电子系统,并将其应用于黑磷烯的研究。这一挑战可以通过使用PI开发的方法来应对,这些方法通常可以被描述为随机计算技术。这些方法类似于投票中使用的统计方法,并且可以准确地模拟比传统的非随机方法更大的系统的材料特性。一旦工具开发出来,PI将使用它们来研究真实的二维黑磷烯片,为基本理解和指导未来对这种材料的实验提供理论框架。该项目中开发和使用的理论工具将提供给社区,旨在增加开发方法的可及性。该项目的教育部分强调使用与研究有关的计算工具,以培训和教育研究生和博士后研究员。本科生和高中生将参与研究,特别是在大规模模拟运行。所有人都将从与以色列合作者的密切互动中受益。技术概述美国国家科学基金会和美国-以色列两国科学基金会(BSF)共同支持美国研究人员和以色列研究人员之间的这项合作。NSF材料研究和化学部门共同资助了该奖项。该奖项支持有关黑磷烯的机械和电子性质的计算研究和教育。传统的大规模模拟这些属性是昂贵的,无论是精确的密度泛函理论与精确交换(DFT),或基于绿色函数(GW)的高度精确的电子结构方法。这个项目将探索迄今无法使用传统的DFT和GW的随机配方制度。随机公式取代了一些,或所有的电子结构方法中固有的轨道与这些轨道的组合的随机采样的众多总和。随机方法被设计成从第一原理计算包含10,000个或更多原子的系统的原子和电子结构。这个量级的尺寸对于建立真实的环境是必要的,这使得能够研究各向异性特性。这种能力允许构建一个理论框架,用于对黑磷烯的基本理解,这反过来将有助于通过指出实现所需性质的可能方向来指导实验和合成工作。精确模拟大型黑磷烯系统的独特能力允许在各种实验条件下探索电子结构,包括温度,应变和光激发。使用随机DFT和Langevin动力学的组合,大的,分层的黑色磷烯纳米带和纳米管的结构和声子色散曲线将进行研究,有和没有机械应力。此外,还将研究表面和周边的缺陷和吸附物的结构。该项目中开发和使用的理论工具将提供给社区,目的是增加对开发方法的访问。该项目的教育部分强调使用与研究有关的计算工具,以培训和教育研究生和博士后研究员。本科生和高中生将参与研究,特别是在大规模模拟运行。所有人都将受益于与以色列合作者的密切互动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Neuhauser其他文献

Stochastic methodology shows molecular interactions protect two-dimensional polaritons
随机方法显示分子相互作用保护二维极化激元
  • DOI:
    10.1103/physrevb.109.l241303
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    N. Bradbury;Raphael F. Ribeiro;Justin R. Caram;Daniel Neuhauser
  • 通讯作者:
    Daniel Neuhauser
Gapped-filtering for efficient Chebyshev expansion of the density projection operator
  • DOI:
    10.1016/j.cplett.2022.140036
  • 发表时间:
    2022-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Minh Nguyen;Daniel Neuhauser
  • 通讯作者:
    Daniel Neuhauser

Daniel Neuhauser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Neuhauser', 18)}}的其他基金

Bethe Salpeter Equation Spectra for Very Large Systems with Thousands of Electrons or More
具有数千个或更多电子的超大型系统的 Bethe Salpeter 方程谱
  • 批准号:
    2245253
  • 财政年份:
    2023
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Continuing Grant
Quantitative nonlinear time-dependent density functional theory (TDDFT) for large systems
大型系统的定量非线性瞬态密度泛函理论 (TDDFT)
  • 批准号:
    1763176
  • 财政年份:
    2018
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Standard Grant
Large Scale Nanopolaritonics
大规模纳米极化
  • 批准号:
    1112500
  • 财政年份:
    2011
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Standard Grant
Molecular Nanopolaritonics
分子纳米极化子学
  • 批准号:
    0810003
  • 财政年份:
    2008
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Continuing Grant
Scattering, Interference, and Motion in Single-Molecule Conductance
单分子电导中的散射、干涉和运动
  • 批准号:
    0315292
  • 财政年份:
    2003
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Continuing Grant
ITR: Cross-Correlation Filter-Diagonalization with Parallel-Computation Monte-Carlo Approaches for Extraction of Eigenvalues of He Clusters in Confined Spaces
ITR:使用并行计算蒙特卡罗方法进行互相关滤波器对角化,提取有限空间中 He 簇的特征值
  • 批准号:
    0312431
  • 财政年份:
    2003
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Standard Grant
Bimolecular Reaction Dynamics
双分子反应动力学
  • 批准号:
    9727084
  • 财政年份:
    1998
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Continuing Grant
Molecular Structure and Dynamics
分子结构和动力学
  • 批准号:
    9502106
  • 财政年份:
    1995
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Continuing Grant
Modern Approaches to Gas-Phase Quantal Molecular Reactions
气相量子分子反应的现代方法
  • 批准号:
    9314320
  • 财政年份:
    1994
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Continuing Grant

相似国自然基金

Dlk1-Meg3印记控制区IG-DMR甲基化重编程介导父体咖啡因暴露所致子代骨质疏松症易感
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
泛素连接酶DDEL1/2/3介导水杨酸羟化酶DMR6降解调控植物免疫的分子机制
  • 批准号:
    32300255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PpbHLH14-DMR6-like响应MeJA诱导增强梨炭疽病抗性的分子机制
  • 批准号:
    32302484
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
circRNA-DMR介导m6A去甲基化酶ALKBH5低表达并促进糖尿病视网膜小胶质细胞M1型极化的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Dlk1-Dio3印记区域内母本甲基化差异甲基化区Meg8-DMR的功能研究
  • 批准号:
    31771601
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
猪RTL1基因DMR甲基化状态对其印记状态及表达水平的调控
  • 批准号:
    31201791
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
雌激素信号介导Igf2-H19 DMR低甲基化在p,p'-DDE致雄性生殖毒性中的作用
  • 批准号:
    81102161
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF/DMR-BSF: Artificial Semiconductor Nanocrystal Molecules for Charge Carrier Separation
NSF/DMR-BSF:用于电荷载流子分离的人造半导体纳米晶体分子
  • 批准号:
    2026741
  • 财政年份:
    2021
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Theory of Quantum Materials
NSF/DMR-BSF:量子材料理论
  • 批准号:
    2000987
  • 财政年份:
    2020
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Synergistic biopolymer co-assembly regulating the emergence of translation and replication in synthetic networks
NSF/DMR-BSF:协同生物聚合物共组装调节合成网络中翻译和复制的出现
  • 批准号:
    2004846
  • 财政年份:
    2020
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Continuing Grant
RUI: NSF/DMR-BSF: Nonequilibrium Quantum Matter: Timescales and Self-Averaging
RUI:NSF/DMR-BSF:非平衡量子物质:时间尺度和自平均
  • 批准号:
    1936006
  • 财政年份:
    2020
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Continuing Grant
NSF/DMR-BSF: Electronic Correlations and Disorder in Berry materials
NSF/DMR-BSF:浆果材料中的电子相关性和无序性
  • 批准号:
    2002795
  • 财政年份:
    2020
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Continuing Grant
NSF/DMR-BSF: Density Functionals for Predictive Excited-State Calculations of Solids (NSF-BSF Application)
NSF/DMR-BSF:用于预测固体激发态计算的密度泛函(NSF-BSF 应用)
  • 批准号:
    2015991
  • 财政年份:
    2020
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Liquid Crystals as a Paradigm for Chirality and Topological Defects
NSF/DMR-BSF:液晶作为手性和拓扑缺陷的范例
  • 批准号:
    1901797
  • 财政年份:
    2019
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Quantum Transport in a Helical One-Dimensional System
NSF/DMR-BSF:螺旋一维系统中的量子传输
  • 批准号:
    1904986
  • 财政年份:
    2019
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Understanding Electro-Chemo-Mechanical Processes at the Atomic Level
NSF/DMR-BSF:了解原子水平上的电化学机械过程
  • 批准号:
    1911592
  • 财政年份:
    2019
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Continuing Grant
NSF/DMR-BSF: Quantum transport of charge and heat in correlated electron systems
NSF/DMR-BSF:相关电子系统中电荷和热量的量子传输
  • 批准号:
    1742752
  • 财政年份:
    2018
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了