Terahertz Quantum Electronics of Carbon Nanostructures: Population Inversion, Gain and Coherent Bandgap Engineering
碳纳米结构的太赫兹量子电子学:粒子数反转、增益和相干带隙工程
基本信息
- 批准号:1611454
- 负责人:
- 金额:$ 37.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The challenge of pushing the switching speed-limit and integration density of today's logic and modulation devices into the terahertz (one trillion cycles per second) and sub-20 nanometer regime underlies the entire field of information processing, recording and communication. This challenge may be met by a novel paradigm of terahertz quantum nano-electronics based on ultrafast coherent laser pumping in graphene - one atom thick, the honeycomb-shaped carbon material - and single-walled carbon nanotubesthe rolled-up sheets of graphene monolayers. Researchers will use short pulsed terahertz light, outside the visible spectrum, and an ultrafast camera technique to directly monitor the formation and time evolution of photo-excited states in these carbon nanomaterials. This novel method will allow them to capture and control their novel electromagnetic properties on the femtosecond scale, or to one quadrillionth of a second. The results will open fascinating opportunities to demonstrate their significant potential to advance, e.g., above-gigahertz light modulators, broadband gain mediums from the infrared to terahertz, radiation controlled hot-electron transistors, multi-functional devices responding to ultrabroadband electromagnetic radiations from the terahertz to visible frequency. Our success in this "ultrafast" and "ultrasmall" challenge will reveal as-yet-undiscovered physical processes for developing new generation optoelectronic device and offer perspectives for sustaining the information revolution and the 21st century's digital economy. Education is an integral and essential component in this proposal. It consists of interconnected, specific plans for education that span small college professors/undergraduates, "A Physics Day" program for high school teachers and their students; outreach to underrepresented minority students and provision of research/training opportunities to them.How coherent photoexcitations control excitonic bosons in single-walled carbon nanotubes and Dirac fermions in graphene monolayers is among the most fundamental, yet cross-cutting, issues in quantum and optoelectronic technologies. The proposal aims to explore some remarkable laser-driven quantum processes in these carbon nanostructures and demonstrate their significant potential for device applications. The primary goals are: to determine broadband gain spectrum and threshold in strongly photoexcited graphene monolayers; to demonstrate coherently photo-driven, bandgap opening near the Dirac cone using intense terahertz pulses; to investigate extreme mid-infrared and far-infrared nonlinear wave mixing in graphene; to achieve terahertz stimulated emission in single-walled carbon nanotubes using two-photon excited, dark exciton states. The approach for the timely advancement lies in the combination of ultrashort terahertz pulses, specially fabricated, high quality mono- and few-layer graphene and carbon nanotubes, and ultra-broadband probe capability from the terahertz to visible spectral regions. This proposal has identified compelling opportunities to advance one of the most poorly- addressed territories in some most exciting materials today dynamical, non-equilibrium, and nonlinear aspects of carbon nanostructures. The targeting problems are in the boundaries of several frontiers such as quantum optical control of matter, terahertz electrical transport, and ultrafast optoelectronic technology. Although sophisticated theoretical studies have been underway, the experimental schemes for exploring a wide range of the predicted fundamental phenomena, as proposed, have lagged behind. These original results are transformative, opening the possibility for graphene- and carbon nanotube- based above-terahertz speed modulators, saturable absorbers, ultra-broadband gain medium.
将当今逻辑和调制器件的开关速度限制和集成密度推到太赫兹(每秒一万亿次)和亚20纳米范围的挑战是整个信息处理、记录和通信领域的基础。这一挑战可以通过一种新的太赫兹量子纳米电子学范式来应对,这种范式基于石墨烯(一个原子厚的蜂窝状碳材料)和单壁碳纳米管(石墨烯单层的卷起片材)中的超快相干激光泵浦。研究人员将使用可见光谱之外的短脉冲太赫兹光和超快相机技术来直接监测这些碳纳米材料中光激发态的形成和时间演化。这种新颖的方法将使他们能够在飞秒尺度上捕获和控制其新颖的电磁特性,或千万亿分之一秒。这些结果将为展示其巨大的发展潜力提供诱人的机会,例如,千兆赫以上的光调制器、从红外到太赫兹的宽带增益介质、辐射控制热电子晶体管、响应于从太赫兹到可见频率的超宽带电磁辐射的多功能器件。我们在这一“超快”和“超小型”挑战中的成功将揭示开发新一代光电器件的尚未发现的物理过程,并为维持信息革命和21世纪世纪的数字经济提供前景。教育是这项建议的一个不可分割的重要组成部分。它包括相互关联的具体教育计划,涵盖小规模的大学教授/本科生,针对高中教师及其学生的“物理日”方案;联系代表性不足的少数民族学生,并为他们提供研究/培训机会。相干光激发如何控制单壁碳纳米管中的激子玻色子和石墨烯单层中的狄拉克费米子是最基本的,但交叉,量子和光电技术的问题。该提案旨在探索这些碳纳米结构中一些显着的激光驱动量子过程,并展示其在器件应用中的巨大潜力。主要目标是:确定强光激发石墨烯单层的宽带增益谱和阈值;使用强太赫兹脉冲演示狄拉克锥附近的相干光驱动带隙开放;研究石墨烯中的极端中红外和远红外非线性波混合;使用双光子激发暗激子态在单壁碳纳米管中实现太赫兹受激发射。及时推进的方法在于将超短太赫兹脉冲,特别制造的高质量单层和少层石墨烯和碳纳米管,以及从太赫兹到可见光谱区域的超宽带探测能力相结合。这项提议已经确定了令人信服的机会,以推进当今一些最令人兴奋的材料中最缺乏解决的领域之一-碳纳米结构的动态,非平衡和非线性方面。目标问题是在几个前沿领域的边界,如量子光学控制的物质,太赫兹电传输,超快光电技术。虽然复杂的理论研究已经在进行中,探索广泛的预测基本现象的实验方案,如所提出的,已经落后。这些原始结果是变革性的,为基于石墨烯和碳纳米管的超太赫兹速度调制器、可饱和吸收体、超宽带增益介质打开了可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jigang Wang其他文献
Effect of droplet spacing on micro-explosion and combustion characteristics of multi-component fuel droplet cluster
液滴间距对多组分燃料液滴簇微爆炸和燃烧特性的影响
- DOI:
10.1016/j.fuel.2024.132323 - 发表时间:
2024 - 期刊:
- 影响因子:7.4
- 作者:
Jing Xu;Suhang Shi;Jiaqi Li;Jigang Wang - 通讯作者:
Jigang Wang
BCN nanosheets templated by g-C3N4 for high performance capacitive deionization
以 g-C3N4 为模板的 BCN 纳米片用于高性能电容去离子
- DOI:
10.1039/c8ta04058c - 发表时间:
2018-07 - 期刊:
- 影响因子:11.9
- 作者:
Shiyong Wang;Gang Wang;Tingting Wu;Yunqi Zhang;Fei Zhan;Yuwei Wang;Jigang Wang;Yu Fu;Jieshan Qiu - 通讯作者:
Jieshan Qiu
All-optical four-state magnetization reversal in (Ga,Mn)As ferromagnetic semiconductors
(Ga,Mn)As铁磁半导体中的全光四态磁化反转
- DOI:
10.1063/1.3634031 - 发表时间:
2011 - 期刊:
- 影响因子:4
- 作者:
M. Kapetanakis;P. Lingos;Carlo Piermarocchi;Jigang Wang;I. Perakis - 通讯作者:
I. Perakis
The “outsized” role of the I-helix kink in human Cytochrome P450s
- DOI:
10.1002/ctm2.1378 - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Jingjing Zhang;Fengting Liu;Yaran Suo;Dudu Tong;Jinyu Hu;Hai-Ning Lyu;Jingjing Liao;Jiaqi Wang;Jigang Wang;Chengchao Xu - 通讯作者:
Chengchao Xu
Method for Solving Bunch Head-Tail Overlapping in Hls-Ii Using New Trigger Scanning Module of the Streak Camera Measurement System
利用条纹相机测量系统新型触发扫描模块解决HLS-II中束首尾重叠的方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yunkun Zhao;Sanshuang Jin;Ruihan Wu;Fangfang Wu;Tianyu Zhou;Ping Lu;Jigang Wang;Baogen Sun - 通讯作者:
Baogen Sun
Jigang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jigang Wang', 18)}}的其他基金
Light Control of Superconductivity by Subcycle Dynamic Symmetry Breaking
亚周期动态对称性破缺对超导的光控制
- 批准号:
1905981 - 财政年份:2019
- 资助金额:
$ 37.72万 - 项目类别:
Standard Grant
CAREER: Ultrafast Magnetism in Complex Materials: Coherent and Cooperative Phenomena
职业:复杂材料中的超快磁性:相干和协作现象
- 批准号:
1055352 - 财政年份:2011
- 资助金额:
$ 37.72万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Creation of quantum molecular electronics by fusion of advanced materials chemistry a nd quantum solid-state physics
通过先进材料化学和量子固体物理学的融合创造量子分子电子学
- 批准号:
23K20039 - 财政年份:2023
- 资助金额:
$ 37.72万 - 项目类别:
Fund for the Promotion of Joint International Research (International Leading Research )
Quantum electronics based on hybrid super/semi-conductor devices
基于混合超/半导体器件的量子电子学
- 批准号:
2889090 - 财政年份:2023
- 资助金额:
$ 37.72万 - 项目类别:
Studentship
Multi-Scale Framework for Quantum Mechanical Simulations of Organic Electronics
有机电子量子力学模拟的多尺度框架
- 批准号:
EP/P033253/2 - 财政年份:2022
- 资助金额:
$ 37.72万 - 项目类别:
Fellowship
Electronic phase tuning in organic two-dimensional hole-gas system and organic quantum electronics
有机二维空穴气体系统中的电子相位调谐和有机量子电子学
- 批准号:
22H04959 - 财政年份:2022
- 资助金额:
$ 37.72万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
A New Spin on Quantum Electronics
量子电子学的新发展
- 批准号:
RGPIN-2019-06193 - 财政年份:2022
- 资助金额:
$ 37.72万 - 项目类别:
Discovery Grants Program - Individual
Computer Aided Design of Atomic Electronics with Coupled Atomic Silicon Quantum Dots
原子硅量子点耦合原子电子学的计算机辅助设计
- 批准号:
RGPIN-2022-04830 - 财政年份:2022
- 资助金额:
$ 37.72万 - 项目类别:
Discovery Grants Program - Individual
Quantum ELecTronics in silIcon Carbide (QELTIC)
碳化硅量子电子学 (QELTIC)
- 批准号:
MR/T041110/1 - 财政年份:2021
- 资助金额:
$ 37.72万 - 项目类别:
Fellowship
A New Spin on Quantum Electronics
量子电子学的新发展
- 批准号:
RGPIN-2019-06193 - 财政年份:2021
- 资助金额:
$ 37.72万 - 项目类别:
Discovery Grants Program - Individual
Distributed Nanocrystal Arrays for Quantum Electronics and Sensing
用于量子电子和传感的分布式纳米晶体阵列
- 批准号:
2126275 - 财政年份:2021
- 资助金额:
$ 37.72万 - 项目类别:
Standard Grant
Room-Temperature Single Atom Silicon Quantum Electronics
室温单原子硅量子电子学
- 批准号:
EP/V027700/1 - 财政年份:2021
- 资助金额:
$ 37.72万 - 项目类别:
Research Grant