CAREER: Ultrafast Magnetism in Complex Materials: Coherent and Cooperative Phenomena

职业:复杂材料中的超快磁性:相干和协作现象

基本信息

  • 批准号:
    1055352
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-02-01 至 2017-01-31
  • 项目状态:
    已结题

项目摘要

*** Non-technical ***One major challenge now being posed for fundamental science and technology is to detect, understand and control spins-an ensemble of nanomagnets-in complex systems within one hundred quadrillionth of a second. On one hand, the complex structures made of inter-connected, individual nano-magnetic building blocks can exhibit valuable characteristics and improved functionalities, which are fundamentally different from the sum of their components. On the other hand, such dynamic magnetic processes are at least 1000 times faster than those of the traditional thermal-magnetic processes used thus far, and thereby carry great promise to exceed the upper limit of the magnetic switching speed (0.1-10 GHz) in modern magneto-optical recording industry and enable extremely high-speed magnetic storage/logic devices. This proposal has identified some major opportunities to address these problems via exploiting ultrashort flashes of mid-infrared and far-infrared (trillion cycles per second) electromagnetic radiation. Success in this "ultrafast spin challenge" will reveal as-yet-undiscovered dynamic processes in advanced magnetic systems, and offer ultimate solution towards the problems indentified. The proposal consists of interconnected, specific plans for education and outreach that span high school teachers and their students, undergraduate and graduate level student training; seeks to attract and keep talented students in careers in sciences, and mentor them along their journey to success; develop new courses with complementary hands-on laboratory modules emphasizing ultrafast laser technology, coupled to undergraduate and graduate curriculum.*** Technical ***This proposal explores ultrafast magnetic phenomena in nanoscale and complex magnetic systems using dynamic magneto-optical spectroscopic methods exploiting femtosecond laser excitations. One of the most challenging questions in condensed matter physics and materials science today is whether one can detect, understand and control macroscopic magnetic orders in their highly non-equilibrium, non-thermal states at femtosecond time scales. Such processes are at least 1000 times faster than those of the traditional thermal-magnetic processes used thus far, and thereby carry great promise to exceed the upper limit of the magnetic switching speed (0.1-10 GHz) in modern magneto-optical recording industry and enable extremely high-speed magnetic storage/logic devices. However, thus far how photoexcited coherence and/or non-thermal carriers can substantially modify the macroscopic ordering at such time scales has been poorly addressed to date and most of the predicted exotic properties of photo-driven magnetic systems have yet to be observed. This proposal will explore photoinduced non-thermal, fs magnetic phase transition and significantly advance our knowledge of quantum spin systems driven far from the equilibrium. The proposal consists of interconnected, specific plans for education and outreach that span high school teachers and their students, undergraduate and graduate level student training; develop new courses with complementary hands-on laboratory modules emphasizing ultrafast laser technology.
* 非技术性 * 现在对基础科学和技术提出的一个主要挑战是在十万亿分之一秒内检测,理解和控制复杂系统中的自旋-纳米磁体的集合。一方面,由相互连接的单个纳米磁性构建块制成的复杂结构可以表现出有价值的特性和改进的功能,这些特性和功能从根本上不同于其组件的总和。另一方面,这样的动态磁过程比迄今为止使用的传统热磁过程快至少1000倍,从而在现代磁光记录工业中具有超过磁切换速度(0.1 - 10GHz)的上限的巨大希望,并且能够实现极高速磁存储/逻辑器件。该提案已经确定了通过利用中红外和远红外(每秒万亿次)电磁辐射的超短闪光来解决这些问题的一些主要机会。这项“超快自旋挑战”的成功将揭示先进磁系统中尚未发现的动态过程,并为所发现的问题提供最终解决方案。该提案包括相互关联的具体教育和推广计划,涵盖高中教师及其学生,本科生和研究生水平的学生培训;旨在吸引和留住有才华的学生从事科学职业,并指导他们沿着他们的成功之旅;开发新课程,补充实践实验室模块,强调超快激光技术,再加上本科生和研究生课程。技术 * 本提案利用飞秒激光激发的动态磁光光谱方法,探索纳米级和复杂磁性系统中的超快磁性现象。 当今凝聚态物理和材料科学中最具挑战性的问题之一是,人们是否可以在飞秒时间尺度上检测、理解和控制处于高度非平衡、非热状态的宏观磁序。 这样的过程比迄今为止使用的传统热磁过程快至少1000倍,从而在现代磁光记录工业中具有超过磁切换速度(0.1 - 10GHz)的上限的巨大希望,并且能够实现极高速磁存储/逻辑器件。 然而,到目前为止,光激发相干性和/或非热载流子如何能够在这样的时间尺度上实质性地改变宏观有序性,迄今为止还没有得到很好的解决,并且大多数预测的光驱动磁系统的奇异性质还有待观察。这一建议将探索光致非热,fs磁相变,并显着推进我们的知识量子自旋系统驱动远离平衡。该提案包括相互关联的具体教育和推广计划,涵盖高中教师及其学生,本科生和研究生水平的学生培训;开发新课程,补充强调超快激光技术的实践实验室模块。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jigang Wang其他文献

Effect of droplet spacing on micro-explosion and combustion characteristics of multi-component fuel droplet cluster
液滴间距对多组分燃料液滴簇微爆炸和燃烧特性的影响
  • DOI:
    10.1016/j.fuel.2024.132323
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Jing Xu;Suhang Shi;Jiaqi Li;Jigang Wang
  • 通讯作者:
    Jigang Wang
BCN nanosheets templated by g-C3N4 for high performance capacitive deionization
以 g-C3N4 为模板的 BCN 纳米片用于高性能电容去离子
  • DOI:
    10.1039/c8ta04058c
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Shiyong Wang;Gang Wang;Tingting Wu;Yunqi Zhang;Fei Zhan;Yuwei Wang;Jigang Wang;Yu Fu;Jieshan Qiu
  • 通讯作者:
    Jieshan Qiu
Method for Solving Bunch Head-Tail Overlapping in Hls-Ii Using New Trigger Scanning Module of the Streak Camera Measurement System
利用条纹相机测量系统新型触发扫描模块解决HLS-II中束首尾重叠的方法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunkun Zhao;Sanshuang Jin;Ruihan Wu;Fangfang Wu;Tianyu Zhou;Ping Lu;Jigang Wang;Baogen Sun
  • 通讯作者:
    Baogen Sun
All-optical four-state magnetization reversal in (Ga,Mn)As ferromagnetic semiconductors
(Ga,Mn)As铁磁半导体中的全光四态磁化反转
  • DOI:
    10.1063/1.3634031
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    4
  • 作者:
    M. Kapetanakis;P. Lingos;Carlo Piermarocchi;Jigang Wang;I. Perakis
  • 通讯作者:
    I. Perakis
The “outsized” role of the I-helix kink in human Cytochrome P450s
  • DOI:
    10.1002/ctm2.1378
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
  • 作者:
    Jingjing Zhang;Fengting Liu;Yaran Suo;Dudu Tong;Jinyu Hu;Hai-Ning Lyu;Jingjing Liao;Jiaqi Wang;Jigang Wang;Chengchao Xu
  • 通讯作者:
    Chengchao Xu

Jigang Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jigang Wang', 18)}}的其他基金

Light Control of Superconductivity by Subcycle Dynamic Symmetry Breaking
亚周期动态对称性破缺对超导的光控制
  • 批准号:
    1905981
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Terahertz Quantum Electronics of Carbon Nanostructures: Population Inversion, Gain and Coherent Bandgap Engineering
碳纳米结构的太赫兹量子电子学:粒子数反转、增益和相干带隙工程
  • 批准号:
    1611454
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Ultrafast-VPCR技术的半夏药材及其成药快速基因检测体系的建立以及应用
  • 批准号:
    81973434
  • 批准年份:
    2019
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems
职业:集成铌酸锂飞秒锁模激光器和超快光子系统
  • 批准号:
    2338798
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAREER: Photo-induced Ultrafast Electron-nuclear Dynamics in Molecules
职业:分子中光致超快电子核动力学
  • 批准号:
    2340570
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Ultrafast tracking of physiological processes in the human eye
超快速跟踪人眼的生理过程
  • 批准号:
    DP240103352
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Projects
Freeform Silica Fibre Optics via Ultrafast Laser Manufacturing
通过超快激光制造的自由形状石英光纤
  • 批准号:
    MR/X034615/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Fellowship
Ultrafast Infrared Spectroscopy Facility
超快红外光谱设备
  • 批准号:
    LE240100004
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
  • 批准号:
    2326788
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Ultrafast Gripping and Release Mechanisms in Slingshot Spider Legs
RII Track-4:NSF:弹弓蜘蛛腿中的超快抓取和释放机制
  • 批准号:
    2327439
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Time-resolved sImulations of ultrafast phenoMena in quantum matErialS (TIMES)
量子材料中超快现象的时间分辨模拟 (TIMES)
  • 批准号:
    EP/Y032659/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
THz frequency structures for particle accelerators: Realising ultrafast electron beam manipulation and diagnostics
粒子加速器的太赫兹频率结构:实现超快电子束操纵和诊断
  • 批准号:
    ST/Y510002/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
NSF-BSF: Ultrafast Laser-Electron Heating for Tailoring the Emittance and Charge of High-Energy Proton Beams
NSF-BSF:超快激光电子加热用于调整高能质子束的发射率和电荷
  • 批准号:
    2308860
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了