New Inference Methods For Multiway Functional Data and Multilayer Network Data
多路功能数据和多层网络数据的新推理方法
基本信息
- 批准号:1612458
- 负责人:
- 金额:$ 30.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on developing efficient models for multi-way functional data and multi-layer network data. Functional data refers to data recorded over a continuum, such as growth curves for many children. Examples of multi-way functional data include brain-imaging data measured over space and time, and data obtained from mobile tracking apps where daily activity profiles are recorded for a number of individuals over a period of many days. Despite the growing number of applications, the complex structure and high-dimensionality of the data pose significant challenges for statistical modeling and inference. The second part of the project focuses on multi-layer network data obtained from multi-modal and multi-task brain connectivity studies. A rigorous statistical framework for these network structures will be developed. In the long history of image processing and spatial-temporal analysis, many methods have relied on separability, the assumption that the covariance can be factorized as a product of a spatial covariance and a temporal covariance. Recent approaches for repeated functional data and multi-way functional data also invoke separability, either explicitly or implicitly, to achieve efficient dimension reduction. A new notion of weak separability, that includes covariance separability as a special case, will be introduced. Tests of weak separability will be developed, and principled answers to several open questions will be provided. In the second part of the project, generative models of multi-layer network data with community structures will be introduced. Least squares estimation of memberships will be studied from a novel relational k-means perspective, and theoretical justification provided under a statistical inference framework.
本项目致力于开发多路功能数据和多层网络数据的高效模型。功能性数据是指在连续体上记录的数据,例如许多儿童的生长曲线。多功能数据的例子包括在空间和时间上测量的脑成像数据,以及从移动跟踪应用程序获得的数据,这些应用程序记录了许多个人在许多天内的日常活动概况。尽管应用越来越多,但数据的复杂结构和高维性给统计建模和推理带来了重大挑战。该项目的第二部分侧重于从多模态和多任务大脑连接研究中获得的多层网络数据。将为这些网络结构制定严格的统计框架。在漫长的图像处理和时空分析历史中,许多方法都依赖于可分离性,即假设协方差可以被分解为空间协方差和时间协方差的乘积。最近针对重复功能数据和多路功能数据的方法也会显式或隐式地调用可分离性,以实现有效的降维。本文将引入弱可分性的一个新概念,其中协方差可分性是一个特例。将开发弱可分性的测试,并对几个悬而未决的问题提供原则性的答案。在项目的第二部分,将介绍具有社区结构的多层网络数据的生成模型。最小二乘估计的成员将从一个新的关系k-means的角度进行研究,并在统计推断框架下提供理论依据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kehui Chen其他文献
400. Dysfunctional Emotion Discrimination in Schizophrenia is Associated with HSV-1 Infection and Improves with Antiviral Treatment
- DOI:
10.1016/j.biopsych.2017.02.417 - 发表时间:
2017-05-15 - 期刊:
- 影响因子:
- 作者:
Vishwajit Nimgaonkar;Triptish Bhatia;Joel Wood;Satish Iyengar;Sreelatha Narayana;Konasale Prasad;Kehui Chen;Robert Yolken;Faith Dickerson;Ruben Gur;Raquel Gur;Smita Deshpande - 通讯作者:
Smita Deshpande
Least Squares Inference for Data with Network Dependency
具有网络依赖性的数据的最小二乘推理
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jing Lei;Kehui Chen;Haeun Moon - 通讯作者:
Haeun Moon
Peripheral Markers of Stress Response Across the Spectrum of Suicidal Thoughts and Behavior
- DOI:
10.1016/j.biopsych.2022.02.155 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Nadine Melhem;David Lewis;Anna Marsland;David Brent;Dara Sakolsky;Antoine Douaihy;Kehui Chen;Brian Thoma - 通讯作者:
Brian Thoma
Synthesis and Biological Evaluation of 5-Methylpyrimidine Derivatives as Dual Inhibitors of EGFR and Src for Cancer Treatment
5-甲基嘧啶衍生物作为 EGFR 和 Src 双重抑制剂用于癌症治疗的合成和生物学评价
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0.6
- 作者:
Longjia Yan;Yaqing Zuo;Kehui Chen;Ying Xu;Y. Le - 通讯作者:
Y. Le
A Zero-imputation Approach in Recommendation Systems with Data Missing Heterogeneously
异构数据缺失推荐系统中的零插补方法
- DOI:
10.5705/ss.202021.0429 - 发表时间:
2024 - 期刊:
- 影响因子:1.4
- 作者:
Jiashen Lu;Kehui Chen - 通讯作者:
Kehui Chen
Kehui Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kehui Chen', 18)}}的其他基金
Modeling and Inference for Data with Network Dependency
具有网络依赖性的数据的建模和推理
- 批准号:
2210402 - 财政年份:2022
- 资助金额:
$ 30.09万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324490 - 财政年份:2023
- 资助金额:
$ 30.09万 - 项目类别:
Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324489 - 财政年份:2023
- 资助金额:
$ 30.09万 - 项目类别:
Continuing Grant
New approaches in Functional Data Analysis: inference for incomplete or correlated data and nonlinear methods
函数数据分析的新方法:不完整或相关数据的推理以及非线性方法
- 批准号:
RGPIN-2020-07235 - 财政年份:2022
- 资助金额:
$ 30.09万 - 项目类别:
Discovery Grants Program - Individual
New approaches in Functional Data Analysis: inference for incomplete or correlated data and nonlinear methods
函数数据分析的新方法:不完整或相关数据的推理以及非线性方法
- 批准号:
RGPIN-2020-07235 - 财政年份:2021
- 资助金额:
$ 30.09万 - 项目类别:
Discovery Grants Program - Individual
New approaches in Functional Data Analysis: inference for incomplete or correlated data and nonlinear methods
函数数据分析的新方法:不完整或相关数据的推理以及非线性方法
- 批准号:
DGECR-2020-00368 - 财政年份:2020
- 资助金额:
$ 30.09万 - 项目类别:
Discovery Launch Supplement
New approaches in Functional Data Analysis: inference for incomplete or correlated data and nonlinear methods
函数数据分析的新方法:不完整或相关数据的推理以及非线性方法
- 批准号:
RGPIN-2020-07235 - 财政年份:2020
- 资助金额:
$ 30.09万 - 项目类别:
Discovery Grants Program - Individual
New Methods in High-Dimensional Causal Inference
高维因果推理的新方法
- 批准号:
1914937 - 财政年份:2019
- 资助金额:
$ 30.09万 - 项目类别:
Standard Grant
Fast approximate inference methods: new algorithms, applications and theory
快速近似推理方法:新算法、应用和理论
- 批准号:
DP180100597 - 财政年份:2018
- 资助金额:
$ 30.09万 - 项目类别:
Discovery Projects
New development of shrinkage estimation methods in statistical inference
统计推断中收缩率估计方法的新进展
- 批准号:
18K11188 - 财政年份:2018
- 资助金额:
$ 30.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Methods and Theory of Statistical Inference for Non-Gaussian Graphical Models
非高斯图模型统计推断的新方法和理论
- 批准号:
1812030 - 财政年份:2018
- 资助金额:
$ 30.09万 - 项目类别:
Standard Grant














{{item.name}}会员




