Canonical Linear Methods and Hierarchical Non-Linear Methods in High-Dimensional Statistics
高维统计中的规范线性方法和分层非线性方法
基本信息
- 批准号:1613002
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Statistics is at the heart of extracting meaningful information from big data. Its primary tasks include estimation and uncertainty assessment. The latter is crucial in big data analysis for sound decision making. For the former, the methods employed in deep learning machines, such as those behind Google's Brain and AlphaGo and Microsoft's Cortana, beg understanding. This research project is intended to bridge practice and theory of statistics in these areas. It aims to provide accessible uncertainty measures for linear modeling of big data and to derive insights into how deep learning works, based on mathematical analysis. This research project develops and analyzes linear and non-linear high-dimensional statistical inferential methods that are easily accessible by practitioners in data science. In the linear case, it develops and analyzes inferential methods based on well-established bootstrap, lasso, partial ridge, and random projection methods. In the non-linear case, it takes the first steps to explain in a principled manner the impressive success of deep learning in practical problems such as image classification and speech recognition. In particular, statistical properties of these methods will be studied under linear and Neyman-Rubin high dimensional models, and via analytical and simulation means. A generative model of a two-layer neural network (or hierarchical non-linear model) will be explored to understand and compare deep learning with other methods, analytically and through simulation studies. Improvements over deep learning as a general supervised learning method are sought by enforcing biologically meaningful constraints from brain connectivity research.
统计学是从大数据中提取有意义信息的核心。它的主要任务包括估算和不确定性评估。后者在大数据分析中对合理决策至关重要。对于前者,b谷歌的Brain、AlphaGo和微软的Cortana等深度学习机器所采用的方法令人难以理解。本研究项目旨在为这些领域的统计理论与实践搭建桥梁。它旨在为大数据的线性建模提供可访问的不确定性度量,并基于数学分析获得深度学习如何工作的见解。该研究项目开发和分析了线性和非线性高维统计推断方法,这些方法易于数据科学从业人员使用。在线性情况下,它开发并分析了基于成熟的bootstrap, lasso, partial ridge和随机投影方法的推理方法。在非线性情况下,它首先以原则性的方式解释深度学习在实际问题(如图像分类和语音识别)中取得的令人印象深刻的成功。特别是,这些方法的统计性质将在线性和Neyman-Rubin高维模型下,并通过分析和模拟手段进行研究。将探索一个双层神经网络(或分层非线性模型)的生成模型,通过分析和仿真研究来理解和比较深度学习与其他方法。深度学习作为一般监督学习方法的改进是通过从大脑连接研究中强制执行生物学上有意义的约束来寻求的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bin Yu其他文献
Does ceruloplasmin differential express in the brain of Ts65Dn: a mouse mode of Down syndrome?
铜蓝蛋白在唐氏综合症小鼠模型 Ts65Dn 的大脑中是否存在差异表达?
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.3
- 作者:
Bin Yu;Jing Kong;Bao;Ziqi Zhu;Bin Zhang;Qiu;S. Shao - 通讯作者:
S. Shao
A PILOT STUDY IN AN APPLICATION OF TEXT MINING TO LEARNING SYSTEM EVALUATION by NITSAWAN KATERATTANAKUL
文本挖掘在学习系统评估中的应用试点研究,作者:NITSAWAN KATERATTANAKUL
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Bin Yu - 通讯作者:
Bin Yu
Lamellar gel containing emulsions as an effective carrier for stabilization and transdermal delivery of retinyl propionate
含有乳液的层状凝胶作为丙酸视黄酯的稳定和透皮递送的有效载体
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuyan Yang;Shaowei Yan;Bin Yu;Chang Gao;Kuan Chang;Jing Wang - 通讯作者:
Jing Wang
Verifiable Visual Cryptography Based on Iterative Algorithm: Verifiable Visual Cryptography Based on Iterative Algorithm
基于迭代算法的可验证视觉密码:基于迭代算法的可验证视觉密码
- DOI:
10.3724/sp.j.1146.2010.00270 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Bin Yu;Jin;Liguo Fang - 通讯作者:
Liguo Fang
Loc680254 regulates Schwann cell proliferation through Psrc1 and Ska1 as a microRNA sponge following sciatic nerve injury
Loc680254 在坐骨神经损伤后作为 microRNA 海绵通过 Psrc1 和 Ska1 调节雪旺细胞增殖
- DOI:
10.1002/glia.24045 - 发表时间:
2021-06 - 期刊:
- 影响因子:6.2
- 作者:
Chun Yao;Qihui Wang;Yaxian Wang;Jiancheng Wu;Xuemin Cao;Yan Lu;Yanping Chen;Wei Feng;Xiaosong Gu;Xin‐Peng Dun;Bin Yu - 通讯作者:
Bin Yu
Bin Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bin Yu', 18)}}的其他基金
Advancing Theory and Methodology for Tree-Based Algorithms in High Dimensions
推进高维树基算法的理论和方法
- 批准号:
2209975 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Understanding Complexity and the Bias-Variance Tradeoff in High Dimensions: Theory and Data Evidence
理解高维度的复杂性和偏差-方差权衡:理论和数据证据
- 批准号:
2015341 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Parallel Ensemble Learning and Feature Interaction Discovery: High Volume Dynamic Data
并行集成学习和特征交互发现:大量动态数据
- 批准号:
1953191 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Understand the functional mechanism of the DSP1 complex in the 3' end maturation of plant small nuclear RNAs
了解DSP1复合物在植物核小RNA 3端成熟中的功能机制
- 批准号:
1818082 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
BIGDATA: F: Scalable and Interpretable Machine Learning: Bridging Mechanistic and Data-Driven Modeling in the Biological Sciences
BIGDATA:F:可扩展和可解释的机器学习:桥接生物科学中的机械和数据驱动建模
- 批准号:
1741340 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Smart Nanofabrication via Rational Assembly of Two-Dimensional Heterosystems
通过二维异质系统的合理组装实现智能纳米制造
- 批准号:
1434689 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Leverage Subsampling for Regression and Dimension Reduction
协作研究:利用子采样进行回归和降维
- 批准号:
1228246 - 财政年份:2012
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Direct Self-Assembly of Large Area, High Crystallinity 2D Graphene on Insulator: An Integratable Carbon Platform
绝缘体上大面积、高结晶度二维石墨烯的直接自组装:可集成的碳平台
- 批准号:
1162312 - 财政年份:2012
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Understanding DAWDLE Function in miRNA and siRNA Biogenesis
了解 DAWDLE 在 miRNA 和 siRNA 生物发生中的功能
- 批准号:
1121193 - 财政年份:2011
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Ultra-Low-Power Complementary Logic with On-Chip Directly Assembled, Highly Adaptive 2-D Graphitic Platform
超低功耗互补逻辑,具有片上直接组装、高度自适应的 2D 图形平台
- 批准号:
1002228 - 财政年份:2010
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
- 批准号:
2338704 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Construction of New Additive and Semi-Implicit General Linear Methods
RII Track-4:NSF:新的加法和半隐式一般线性方法的构造
- 批准号:
2327484 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Small: Efficient, Deterministic and Formally Certified Methods for Solving Low-dimensional Linear Programs with Floating-point Precision
SHF:小型:用于以浮点精度求解低维线性程序的高效、确定性且经过正式认证的方法
- 批准号:
2312220 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Exploring unsupervised domain adaptation methods for automated linear disturbance mapping
探索自动线性扰动映射的无监督域适应方法
- 批准号:
577643-2022 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Alliance Grants
Business Cycle Accounting with Non-linear Solution Methods
非线性求解方法的经济周期会计
- 批准号:
22K01394 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pretest and shrinkage estimation methods for joint modeling of linear mixed models and the AFT model
线性混合模型和AFT模型联合建模的预测试和收缩估计方法
- 批准号:
573853-2022 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
University Undergraduate Student Research Awards
New Coupled-cluster Methods for Linear and Non-linear Valence and Core-level Spectroscopy in Gas and Condensed Phase
气相和凝聚相中线性和非线性价态和核心级光谱学的新耦合簇方法
- 批准号:
2154482 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Advanced Optimal Control Methods for Non-Linear and Distributed-Parameter Processes
非线性和分布式参数过程的先进优化控制方法
- 批准号:
RGPIN-2020-04352 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
LEAPS-MPS: Hybridizable discontinuous Galerkin methods for non-linear integro-differential boundary value problems in magnetic plasma confinement
LEAPS-MPS:磁等离子体约束中非线性积分微分边值问题的混合不连续伽辽金方法
- 批准号:
2137305 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Optimization of General Linear Time-Marching Methods
一般线性时间推进方法的优化
- 批准号:
561878-2021 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
University Undergraduate Student Research Awards