Asymptotic Analysis for Magnetostrophic Turbulence
磁致湍流的渐近分析
基本信息
- 批准号:1613135
- 负责人:
- 金额:$ 15.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Earth's magnetic field is vitally important to the existence of life on our planet. It serves to protect the Earth from the charged particles of the solar wind that would otherwise strip away the upper atmosphere. Changes in the magnetic field have significant implications for climatic changes. The source of the Earth's magnetic field is deep inside the Earth where a small solid iron center is surrounded by a huge spherical mass of electrically conducting liquid iron. Convection in this liquid is at the origin of Earth's magnetic field through a dynamo effect: this is the process by which the rotating, convecting, molten iron maintains the geomagnetic field against ohmic decay. The mathematical description of this process is a highly complex system of three-dimensional, nonlinear partial differential equations (PDE) that govern convective magnetohydrodynamics. Computer models have been used to simulate the actual geodynamo; however, no three-dimensional model has yet been run at the spatial resolution required to encompass the broad spectrum of turbulence that surely exists in the Earth's fluid core. The investigator and collaborators study a PDE model for the core where a stochastic force driving the geodynamo is to be interpreted as a source that is continuously regenerating a statistically steady buoyancy distribution throughout the fluid. For scales relevant to the Earth's core, this PDE system has many small parameters. The team exploits this feature by analyzing the asymptotics of the stochastically forced PDE in the limit of vanishingly small parameters. They aim to establish that the PDE system sustains ergodic statistically steady states, thus providing a rigorous foundation for a turbulent geodynamo. A graduate student is involved in the research. The partial differential equations that govern fluid dynamics are notoriously challenging. One aspect of the challenge is the singular behavior of the equations as certain parameters, which are produced by the physics of the problem, vanish. Studying such problems is important both to illuminate the physical processes described by the singular limits and to advance the creation of new mathematical techniques. The investigator and collaborators contribute to this endeavor by studying mathematical models for magnetostrophic turbulence in the Earth's fluid core. The analysis requires a detailed understanding of the delicate interaction between the nonlinearity and the stochastic forcing. The team plans to apply recent developments in a theory of hypoellipticity for stochastic PDE with spatially degenerate forcing to prove the existence of unique ergodic invariant measures for the PDE that model magnetostrophic turbulence.
地球磁场对地球上的生命至关重要。它的作用是保护地球免受太阳风带电粒子的影响,否则这些粒子会剥离高层大气。磁场的变化对气候变化有重要影响。地球磁场的来源是在地球内部深处,一个小的固体铁中心被一个巨大的球形导电液态铁包围。这种液体中的对流是通过发电机效应产生地球磁场的起源:这是旋转、对流的熔融铁维持地磁场对抗欧姆衰减的过程。这个过程的数学描述是一个高度复杂的三维系统,非线性偏微分方程(PDE),管理对流磁流体动力学。计算机模型已经被用来模拟实际的地球发电机;然而,还没有三维模型在空间分辨率上运行,以涵盖地球流体核心中肯定存在的广泛的湍流。研究人员和合作者研究了一个PDE模型的核心,其中驱动地球发电机的随机力被解释为一个源,不断再生一个统计稳定的浮力分布在整个流体。对于与地核相关的尺度,这个偏微分方程系统有许多小参数。该团队通过分析随机强迫PDE在极小参数极限下的渐近性来利用这一特性。他们的目标是建立PDE系统维持遍历统计稳定状态,从而提供了一个严格的基础湍流地球发电机。一名研究生参与了这项研究。控制流体动力学的偏微分方程是出了名的具有挑战性。挑战的一个方面是方程的奇异行为,因为由问题的物理学产生的某些参数消失了。研究这类问题对于阐明奇异极限所描述的物理过程和促进新的数学技术的创造都很重要。研究人员和合作者通过研究地球流体核心中的磁旋湍流的数学模型为这一奋进做出了贡献。 分析需要详细了解的非线性和随机强迫之间的微妙的相互作用。该小组计划应用最近的发展,在一个理论的hypoellipticity随机偏微分方程与空间退化强迫证明存在独特的遍历不变的措施偏微分方程模型磁旋湍流。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan Friedlander其他文献
Non-uniqueness of forced active scalar equations with even drift operators
偶漂移算子的强制主动标量方程的非唯一性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mimi Dai;Susan Friedlander - 通讯作者:
Susan Friedlander
Screening and Treatment of Tobacco Use Disorder in Mental Health Clinics in New York State: Current Status and Potential Next Steps
纽约州心理健康诊所烟草使用障碍的筛查和治疗:现状和潜在的后续步骤
- DOI:
10.1007/s10597-020-00726-0 - 发表时间:
2020 - 期刊:
- 影响因子:2.7
- 作者:
Adria Zern;M. Seserman;Heather L M Dacus;B. Wallace;Susan Friedlander;M. Manseau;Maxine Smalling;Thomas E. Smith;Jill M Williams;M. Compton - 通讯作者:
M. Compton
The mathematical Miller of Nottingham
- DOI:
10.1007/bf03025884 - 发表时间:
2009-01-13 - 期刊:
- 影响因子:0.400
- 作者:
Susan Friedlander;Anton Powell - 通讯作者:
Anton Powell
Susan Friedlander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan Friedlander', 18)}}的其他基金
Active Scalar Equations and a Geodynamo Model
主动标量方程和地球发电机模型
- 批准号:
1207780 - 财政年份:2012
- 资助金额:
$ 15.52万 - 项目类别:
Standard Grant
The fluid equations, shell models and the limit of vanishing viscosity
流体方程、壳模型和消失粘度极限
- 批准号:
0849397 - 财政年份:2008
- 资助金额:
$ 15.52万 - 项目类别:
Standard Grant
The fluid equations, shell models and the limit of vanishing viscosity
流体方程、壳模型和消失粘度极限
- 批准号:
0803268 - 财政年份:2008
- 资助金额:
$ 15.52万 - 项目类别:
Standard Grant
Topics related to the dynamics of an ideal fluid.
与理想流体动力学相关的主题。
- 批准号:
0503768 - 财政年份:2005
- 资助金额:
$ 15.52万 - 项目类别:
Standard Grant
Topics in Mathematical Fluid Dynamics
数学流体动力学专题
- 批准号:
0202767 - 财政年份:2002
- 资助金额:
$ 15.52万 - 项目类别:
Standard Grant
Mathematical Sciences: "Mathematical Topics Related to Fluid Instabilities
数学科学:“与流体不稳定性相关的数学主题
- 批准号:
9622563 - 财政年份:1996
- 资助金额:
$ 15.52万 - 项目类别:
Continuing Grant
Topics in Hydrodynamics (Mathematics)
流体动力学主题(数学)
- 批准号:
9353093 - 财政年份:1994
- 资助金额:
$ 15.52万 - 项目类别:
Standard Grant
Mathematical Sciences: U.S. - Russia Cooperative Research Program
数学科学:美国-俄罗斯合作研究计划
- 批准号:
9300752 - 财政年份:1993
- 资助金额:
$ 15.52万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
- 批准号:
10089539 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Collaborative R&D
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
- 批准号:
10089592 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Collaborative R&D
Home Office Criminal Justice System Strategy Analysis Fellowship
内政部刑事司法系统战略分析奖学金
- 批准号:
ES/Y004906/1 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Fellowship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
- 批准号:
EP/Z531133/1 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Research Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
- 批准号:
2315532 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Continuing Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
- 批准号:
2348238 - 财政年份:2024
- 资助金额:
$ 15.52万 - 项目类别:
Standard Grant